Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstr...Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.展开更多
The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Inst...The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms by proposing innovative methodologies aimed at enhancing their positive aspects and mitigating their negative repercussions. To achieve this, the study introduces a weight learning method grounded in multi-linear attribute ranking. This approach serves to evaluate the significance of attribute combinations across all feature spaces. Additionally, a novel clustering method based on tensors is proposed to elevate the quality of clustering while effectively distinguishing selected features. The methodology incorporates a weighted average similarity matrix and optionally integrates weighted Euclidean distance, contributing to a more nuanced understanding of attribute importance. The analysis of the proposed methods yields significant findings. The weight learning method proves instrumental in discerning the importance of attribute combinations, shedding light on key aspects within feature spaces. Simultaneously, the clustering method based on tensors exhibits improved efficacy in enhancing clustering quality and feature distinction. This not only advances our understanding of attribute importance but also paves the way for more nuanced data analysis methodologies. In conclusion, this research underscores the pivotal role of network platforms in contemporary society, emphasizing their potential for both positive contributions and adverse consequences. The proposed methodologies offer novel approaches to address these dualities, providing a foundation for future research and practical applications. Ultimately, this study contributes to the ongoing discourse on optimizing the utility of network platforms while minimizing their negative impacts.展开更多
In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid...In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.展开更多
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge...The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches.展开更多
Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisf...Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding (FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.展开更多
Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising met...Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance.展开更多
Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The ma...Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs ...Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.展开更多
Automatic Modulation Classification(AMC) is an important technology used to recognize the modulation type.A dictionary set was trained via signals with known modulation schemes in cooperative scenarios.Then we classif...Automatic Modulation Classification(AMC) is an important technology used to recognize the modulation type.A dictionary set was trained via signals with known modulation schemes in cooperative scenarios.Then we classify the modulation scheme of the signals received in the non-cooperative environment according to its sparse representation.Furthermore,we proposed a novel approach called Fast Block Coordinate descent Dictionary Learning(FBCDL).Moreover,the convergence of FBCDL was proved and we find that our proposed method achieves lower complexity.Experimental results indicate that our proposed FBCDL achieves better classification accuracy than traditional methods.展开更多
Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge.However,most data-dr...Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge.However,most data-driven process-monitoring methods assume that historical training data and online testing data follow the same distribution.In fact,due to the harsh environment of industrial systems,the collected data from real industrial processes are always affected by many factors,such as the changeable operating environment,variation in the raw materials,and production indexes.These factors often cause the distributions of online monitoring data and historical training data to differ,which induces a model mismatch in the process-monitoring task.Thus,it is difficult to achieve accurate process monitoring when a model learned from training data is applied to actual online monitoring.In order to resolve the problem of the distribution divergence between historical training data and online testing data that is induced by changeable operation environments,a robust transfer dictionary learning(RTDL)algorithm is proposed in this paper for industrial process monitoring.The RTDL is a synergy of representative learning and domain adaptive transfer learning.The proposed method regards historical training data and online testing data as the source domain and the target domain,respectively,in the transfer learning problem.Maximum mean discrepancy regularization and linear discriminant analysis-like regularization are then incorporated into the dictionary learning framework,which can reduce the distribution divergence between the source domain and target domain.In this way,a robust dictionary can be learned even if the characteristics of the source domain and target domain are evidently different under the interference of a realistic and changeable operation environment.Such a dictionary can effectively improve the performance of process monitoring and mode classification.Extensive experiments including a numerical simulation and two industrial systems are conducted to verify the efficiency and superiority of the proposed method.展开更多
To create a green and healthy living environment,people have put forward higher requirements for the refined management of ecological resources.A variety of technologies,including satellite remote sensing,Internet of ...To create a green and healthy living environment,people have put forward higher requirements for the refined management of ecological resources.A variety of technologies,including satellite remote sensing,Internet of Things,artificial intelligence,and big data,can build a smart environmental monitoring system.Remote sensing image classification is an important research content in ecological environmental monitoring.Remote sensing images contain rich spatial information andmulti-temporal information,but also bring challenges such as difficulty in obtaining classification labels and low classification accuracy.To solve this problem,this study develops a transductive transfer dictionary learning(TTDL)algorithm.In the TTDL,the source and target domains are transformed fromthe original sample space to a common subspace.TTDL trains a shared discriminative dictionary in this subspace,establishes associations between domains,and also obtains sparse representations of source and target domain data.To obtain an effective shared discriminative dictionary,triple-induced ordinal locality preserving term,Fisher discriminant term,and graph Laplacian regularization termare introduced into the TTDL.The triplet-induced ordinal locality preserving term on sub-space projection preserves the local structure of data in low-dimensional subspaces.The Fisher discriminant term on dictionary improves differences among different sub-dictionaries through intra-class and inter-class scatters.The graph Laplacian regularization term on sparse representation maintains the manifold structure using a semi-supervised weight graphmatrix,which can indirectly improve the discriminative performance of the dictionary.The TTDL is tested on several remote sensing image datasets and has strong discrimination classification performance.展开更多
The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This ...The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This paper investigates impulsive signals detection of a single-point defect rolling bearing and presents a novel data-driven detection approach based on dictionary learning.To overcome the effects harmonic and noise components,we propose an autoregressive-minimum entropy deconvolution model to separate harmonic and deconvolve the effect of the transmission path.To address the shortcomings of conventional sparse representation under the changeable operation environment,we propose an approach that combines K-clustering with singular value decomposition(K-SVD)and split-Bregman to extract impulsive components precisely.Via experiments on synthetic signals and real run-to-failure signals,the excellent performance for different impulsive signals detection verifies the effectiveness and robustness of the proposed approach.Meanwhile,a comparison with the state-of-the-art methods is illustrated,which shows that the proposed approach can provide more accurate detected impulsive signals.展开更多
Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is...Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is that each sub-dictionary possesses discriminative information about its corresponding source,and this information can be used to recover almost every sample from that source.However,in a more general sense,the samples from a source are composed not only of discriminative information but also common information shared with other sources.This paper proposes learning a discriminative high-fidelity dictionary to improve the separation performance.The innovations are threefold.Firstly,an extra sub-dictionary was combined into a conventional union dictionary to ensure that the source-specific sub-dictionaries can capture only the purely discriminative information for their corresponding sources because the common information is collected in the additional sub-dictionary.Secondly,a task-driven learning algorithm is designed to optimize the new union dictionary and a set of weights that indicate how much of the common information should be allocated to each source.Thirdly,a source separation scheme based on the learned dictionary is presented.Experimental results on a human speech dataset yield evidence that our algorithm can achieve better separation performance than either state-of-the-art or traditional algorithms.展开更多
Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary l...Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary learning method-based unmixing methods are found to be short of robustness in noisy contexts.To improve the performance,this study specifically puts forward a new unsupervised spectral unmixing solution.For the reason that the solution only functions in a condition that both endmembers and the abundances meet non-negative con-straints,a model is built to solve the unsupervised spectral un-mixing problem on the account of the dictionary learning me-thod.To raise the screening accuracy of final members,a new form of the target function is introduced into dictionary learning practice,which is conducive to the growing robustness of noisy HSI statistics.Then,by introducing the total variation(TV)terms into the proposed spectral unmixing based on robust nonnega-tive dictionary learning(RNDLSU),the context information under HSI space is to be cited as prior knowledge to compute the abundances when performing sparse unmixing operations.Ac-cording to the final results of the experiment,this method makes favorable performance under varying noise conditions,which is especially true under low signal to noise conditions.展开更多
To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modi...To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition(K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bagQoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoSwords, Locality Constrained Feature Coding(LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines(SVM) clas-sifier. Our experimental results demonstrate the feasibility of the proposed classification method.展开更多
Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancem...Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancement methods are difficult to yield satisfactory processing outcomes for reservoir characterization. To solve this problem, we develop a new approach for simultaneous denoising and resolution enhancement of seismic data based on convolution dictionary learning. First, an elastic convolution dictionary learning algorithm is presented to efficiently learn a convolution dictionary with stronger representation capability from the noisy data to be processed. Specifically, the algorithm introduces the elastic L1/2 norm as a sparsity constraint and employs a steepest gradient descent strategy to efficiently solve the frequency-domain linear system with substantial computational cost in a half-quadratic splitting framework. Then, based on the learned convolution dictionary, a weighted convolutional sparse representation paradigm is designed to encode the noisy data to acquire an optimal sparse approximation of the effective signal. Subsequently, a high-resolution dictionary with a broadband spectrum is constructed by the proposed parameter scaling strategy and matched filtering technique on the basis of atomic spectrum modeling. Finally, the optimal sparse approximation of the effective signal and the constructed high-resolution dictionary are used for data reconstruction to obtain the seismic signal with high resolution and high signal-to-noise ratio. Synthetic and field dataset examples are executed to check the effectiveness and reliability of the developed method. The results indicate that this method has a more competitive performance in seismic applications compared with the conventional deconvolution and spectral whitening methods.展开更多
The multispectral remote sensing image(MS-RSI)is degraded existing multi-spectral camera due to various hardware limitations.In this paper,we propose a novel core tensor dictionary learning approach with the robust mo...The multispectral remote sensing image(MS-RSI)is degraded existing multi-spectral camera due to various hardware limitations.In this paper,we propose a novel core tensor dictionary learning approach with the robust modified Gaussian mixture model for MS-RSI restoration.First,the multispectral patch is modeled by three-order tensor and high-order singular value decomposition is applied to the tensor.Then the task of MS-RSI restoration is formulated as a minimum sparse core tensor estimation problem.To improve the accuracy of core tensor coding,the core tensor estimation based on the robust modified Gaussian mixture model is introduced into the proposed model by exploiting the sparse distribution prior in image.When applied to MS-RSI restoration,our experimental results have shown that the proposed algorithm can better reconstruct the sharpness of the image textures and can outperform several existing state-of-the-art multispectral image restoration methods in both subjective image quality and visual perception.展开更多
This paper proposes an adaptive sparsity-based direct position determination (DPD) appoach to locate multiple targets in the case of time-varying channels. The novel feature of this method is to dynamically adjust bot...This paper proposes an adaptive sparsity-based direct position determination (DPD) appoach to locate multiple targets in the case of time-varying channels. The novel feature of this method is to dynamically adjust both the overcomplete basis and the sparse solution based on a two-step dictionary learning (DL) framework. The method first performs supervised offline DL by using the quadratic programming approach, and then the dictionary is continuously updated in an incremental fashion to adapt to the time-varying channel during the online stage. Furthermore, the method does not need the number of emitters a prior. Simulation results demonstrate the performance of the proposed algorithm on the location estimation accuracy.展开更多
基金the National Natural Science Foundation of China(No.61861023)the Yunnan Fundamental Research Project(No.202301AT070452)。
文摘Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.
基金sponsored by the National Natural Science Foundation of P.R.China(Nos.62102194 and 62102196)Six Talent Peaks Project of Jiangsu Province(No.RJFW-111)Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.KYCX23_1087 and KYCX22_1027).
文摘The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms by proposing innovative methodologies aimed at enhancing their positive aspects and mitigating their negative repercussions. To achieve this, the study introduces a weight learning method grounded in multi-linear attribute ranking. This approach serves to evaluate the significance of attribute combinations across all feature spaces. Additionally, a novel clustering method based on tensors is proposed to elevate the quality of clustering while effectively distinguishing selected features. The methodology incorporates a weighted average similarity matrix and optionally integrates weighted Euclidean distance, contributing to a more nuanced understanding of attribute importance. The analysis of the proposed methods yields significant findings. The weight learning method proves instrumental in discerning the importance of attribute combinations, shedding light on key aspects within feature spaces. Simultaneously, the clustering method based on tensors exhibits improved efficacy in enhancing clustering quality and feature distinction. This not only advances our understanding of attribute importance but also paves the way for more nuanced data analysis methodologies. In conclusion, this research underscores the pivotal role of network platforms in contemporary society, emphasizing their potential for both positive contributions and adverse consequences. The proposed methodologies offer novel approaches to address these dualities, providing a foundation for future research and practical applications. Ultimately, this study contributes to the ongoing discourse on optimizing the utility of network platforms while minimizing their negative impacts.
基金supported by the National Natural Science Foundation of China(61771372,61771367,62101494)the National Outstanding Youth Science Fund Project(61525105)+1 种基金Shenzhen Science and Technology Program(KQTD20190929172704911)the Aeronautic al Science Foundation of China(2019200M1001)。
文摘In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.
基金supported by a grant from the Research Grant Council of Hong Kong Special Administrative Region(Project No.11207724).
文摘The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches.
基金supported by the National Natural Science Foundation of China (No. 51201182)
文摘Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding (FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.
基金financially supported the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA14020102)the National Natural Science Foundation of China (Nos. 41774125,41530320 and 41804098)the Key National Research Project of China (Nos. 2016YFC0303100,2017YFC0601900)。
文摘Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance.
基金This research was funded by the National Natural Science Foundation of China(21878124,31771680 and 61773182).
文摘Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.
基金This work was supported by National Natural Science Foundation of China(NSFC)under Grant No.61771299,No.61771322,No.61375015,No.61301027.
文摘Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.
基金supported in part by the National Natural Science Foundation of China with grants 61525101,91746301,61631003,61601055the Shenzhen Fundamental Research Fund with grant KQTD2015033114415450
文摘Automatic Modulation Classification(AMC) is an important technology used to recognize the modulation type.A dictionary set was trained via signals with known modulation schemes in cooperative scenarios.Then we classify the modulation scheme of the signals received in the non-cooperative environment according to its sparse representation.Furthermore,we proposed a novel approach called Fast Block Coordinate descent Dictionary Learning(FBCDL).Moreover,the convergence of FBCDL was proved and we find that our proposed method achieves lower complexity.Experimental results indicate that our proposed FBCDL achieves better classification accuracy than traditional methods.
基金This work was supported in part by the National Natural Science Foundation of China(61988101)in part by the National Key R&D Program of China(2018YFB1701100).
文摘Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge.However,most data-driven process-monitoring methods assume that historical training data and online testing data follow the same distribution.In fact,due to the harsh environment of industrial systems,the collected data from real industrial processes are always affected by many factors,such as the changeable operating environment,variation in the raw materials,and production indexes.These factors often cause the distributions of online monitoring data and historical training data to differ,which induces a model mismatch in the process-monitoring task.Thus,it is difficult to achieve accurate process monitoring when a model learned from training data is applied to actual online monitoring.In order to resolve the problem of the distribution divergence between historical training data and online testing data that is induced by changeable operation environments,a robust transfer dictionary learning(RTDL)algorithm is proposed in this paper for industrial process monitoring.The RTDL is a synergy of representative learning and domain adaptive transfer learning.The proposed method regards historical training data and online testing data as the source domain and the target domain,respectively,in the transfer learning problem.Maximum mean discrepancy regularization and linear discriminant analysis-like regularization are then incorporated into the dictionary learning framework,which can reduce the distribution divergence between the source domain and target domain.In this way,a robust dictionary can be learned even if the characteristics of the source domain and target domain are evidently different under the interference of a realistic and changeable operation environment.Such a dictionary can effectively improve the performance of process monitoring and mode classification.Extensive experiments including a numerical simulation and two industrial systems are conducted to verify the efficiency and superiority of the proposed method.
基金This research was funded in part by the Natural Science Foundation of Jiangsu Province under Grant BK 20211333by the Science and Technology Project of Changzhou City(CE20215032).
文摘To create a green and healthy living environment,people have put forward higher requirements for the refined management of ecological resources.A variety of technologies,including satellite remote sensing,Internet of Things,artificial intelligence,and big data,can build a smart environmental monitoring system.Remote sensing image classification is an important research content in ecological environmental monitoring.Remote sensing images contain rich spatial information andmulti-temporal information,but also bring challenges such as difficulty in obtaining classification labels and low classification accuracy.To solve this problem,this study develops a transductive transfer dictionary learning(TTDL)algorithm.In the TTDL,the source and target domains are transformed fromthe original sample space to a common subspace.TTDL trains a shared discriminative dictionary in this subspace,establishes associations between domains,and also obtains sparse representations of source and target domain data.To obtain an effective shared discriminative dictionary,triple-induced ordinal locality preserving term,Fisher discriminant term,and graph Laplacian regularization termare introduced into the TTDL.The triplet-induced ordinal locality preserving term on sub-space projection preserves the local structure of data in low-dimensional subspaces.The Fisher discriminant term on dictionary improves differences among different sub-dictionaries through intra-class and inter-class scatters.The graph Laplacian regularization term on sparse representation maintains the manifold structure using a semi-supervised weight graphmatrix,which can indirectly improve the discriminative performance of the dictionary.The TTDL is tested on several remote sensing image datasets and has strong discrimination classification performance.
基金This work was supported by the National Natural Science Foundation of China(61773080,61633005)the Fundamental Research Funds for the Central Universities(2019CDYGZD001)Scientific Reserve Talent Programs of Chongqing University(cqu2018CDHB1B04).
文摘The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This paper investigates impulsive signals detection of a single-point defect rolling bearing and presents a novel data-driven detection approach based on dictionary learning.To overcome the effects harmonic and noise components,we propose an autoregressive-minimum entropy deconvolution model to separate harmonic and deconvolve the effect of the transmission path.To address the shortcomings of conventional sparse representation under the changeable operation environment,we propose an approach that combines K-clustering with singular value decomposition(K-SVD)and split-Bregman to extract impulsive components precisely.Via experiments on synthetic signals and real run-to-failure signals,the excellent performance for different impulsive signals detection verifies the effectiveness and robustness of the proposed approach.Meanwhile,a comparison with the state-of-the-art methods is illustrated,which shows that the proposed approach can provide more accurate detected impulsive signals.
基金This work was supported by the National Natural Science Foundation of China(62001489)the scientific research planning project of National University of Defense Technology(JS19-04).
文摘Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is that each sub-dictionary possesses discriminative information about its corresponding source,and this information can be used to recover almost every sample from that source.However,in a more general sense,the samples from a source are composed not only of discriminative information but also common information shared with other sources.This paper proposes learning a discriminative high-fidelity dictionary to improve the separation performance.The innovations are threefold.Firstly,an extra sub-dictionary was combined into a conventional union dictionary to ensure that the source-specific sub-dictionaries can capture only the purely discriminative information for their corresponding sources because the common information is collected in the additional sub-dictionary.Secondly,a task-driven learning algorithm is designed to optimize the new union dictionary and a set of weights that indicate how much of the common information should be allocated to each source.Thirdly,a source separation scheme based on the learned dictionary is presented.Experimental results on a human speech dataset yield evidence that our algorithm can achieve better separation performance than either state-of-the-art or traditional algorithms.
基金supported by the National Natural Science Foundation of China(61801513).
文摘Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary learning method-based unmixing methods are found to be short of robustness in noisy contexts.To improve the performance,this study specifically puts forward a new unsupervised spectral unmixing solution.For the reason that the solution only functions in a condition that both endmembers and the abundances meet non-negative con-straints,a model is built to solve the unsupervised spectral un-mixing problem on the account of the dictionary learning me-thod.To raise the screening accuracy of final members,a new form of the target function is introduced into dictionary learning practice,which is conducive to the growing robustness of noisy HSI statistics.Then,by introducing the total variation(TV)terms into the proposed spectral unmixing based on robust nonnega-tive dictionary learning(RNDLSU),the context information under HSI space is to be cited as prior knowledge to compute the abundances when performing sparse unmixing operations.Ac-cording to the final results of the experiment,this method makes favorable performance under varying noise conditions,which is especially true under low signal to noise conditions.
基金supported in part by the National Natural Science Foundation of China (NO. 61401004, 61271233, 60972038)Plan of introduction and cultivation of university leading talents in Anhui (No.gxfxZ D2016013)+3 种基金the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (No. KJ2010B357)Startup Project of Anhui Normal University Doctor Scientific Research (No.2016XJJ129)the US National Science Foundation under grants CNS1702957 and ACI-1642133the Wireless Engineering Research and Education Center at Auburn University
文摘To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition(K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bagQoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoSwords, Locality Constrained Feature Coding(LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines(SVM) clas-sifier. Our experimental results demonstrate the feasibility of the proposed classification method.
基金This work is supported by the Laoshan National Laboratoryof ScienceandTechnologyFoundation(No.LSKj202203400)the National Natural Science Foundation of China(No.41874146).
文摘Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancement methods are difficult to yield satisfactory processing outcomes for reservoir characterization. To solve this problem, we develop a new approach for simultaneous denoising and resolution enhancement of seismic data based on convolution dictionary learning. First, an elastic convolution dictionary learning algorithm is presented to efficiently learn a convolution dictionary with stronger representation capability from the noisy data to be processed. Specifically, the algorithm introduces the elastic L1/2 norm as a sparsity constraint and employs a steepest gradient descent strategy to efficiently solve the frequency-domain linear system with substantial computational cost in a half-quadratic splitting framework. Then, based on the learned convolution dictionary, a weighted convolutional sparse representation paradigm is designed to encode the noisy data to acquire an optimal sparse approximation of the effective signal. Subsequently, a high-resolution dictionary with a broadband spectrum is constructed by the proposed parameter scaling strategy and matched filtering technique on the basis of atomic spectrum modeling. Finally, the optimal sparse approximation of the effective signal and the constructed high-resolution dictionary are used for data reconstruction to obtain the seismic signal with high resolution and high signal-to-noise ratio. Synthetic and field dataset examples are executed to check the effectiveness and reliability of the developed method. The results indicate that this method has a more competitive performance in seismic applications compared with the conventional deconvolution and spectral whitening methods.
基金This work was supported by the Project of Shandong Province Higher Educational Science and Technology Program[KJ2018BAN047,Geng,L.]National Natural Science Foundation of China[61801222,Fu,P.]+2 种基金Fundamental Research Funds for the Central Universities[30919011230,Fu,P.]Science and Technology Innovation Program for Distributed Young Talents of Shandong Province Higher Education Institutions[2019KJN045,Guo,Q.]Shandong Provincial Key Laboratory of Network Based Intelligent Computing[http://nbic.ujn.edu.cn/].
文摘The multispectral remote sensing image(MS-RSI)is degraded existing multi-spectral camera due to various hardware limitations.In this paper,we propose a novel core tensor dictionary learning approach with the robust modified Gaussian mixture model for MS-RSI restoration.First,the multispectral patch is modeled by three-order tensor and high-order singular value decomposition is applied to the tensor.Then the task of MS-RSI restoration is formulated as a minimum sparse core tensor estimation problem.To improve the accuracy of core tensor coding,the core tensor estimation based on the robust modified Gaussian mixture model is introduced into the proposed model by exploiting the sparse distribution prior in image.When applied to MS-RSI restoration,our experimental results have shown that the proposed algorithm can better reconstruct the sharpness of the image textures and can outperform several existing state-of-the-art multispectral image restoration methods in both subjective image quality and visual perception.
基金supported by China Postdoctoral Science Foundation(2015M582355)the Doctor Scientific Research Start Project from Hubei University of Science and Technology(BK1418)National Natural Science Foundation of China(61271256)
文摘This paper proposes an adaptive sparsity-based direct position determination (DPD) appoach to locate multiple targets in the case of time-varying channels. The novel feature of this method is to dynamically adjust both the overcomplete basis and the sparse solution based on a two-step dictionary learning (DL) framework. The method first performs supervised offline DL by using the quadratic programming approach, and then the dictionary is continuously updated in an incremental fashion to adapt to the time-varying channel during the online stage. Furthermore, the method does not need the number of emitters a prior. Simulation results demonstrate the performance of the proposed algorithm on the location estimation accuracy.