期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
A viscoplastic self-consistent analysis of tensile anisotropy and tension-compression asymmetry in rare-earth magnesium alloy
1
作者 Xiaohua Zhang Rui Zhou +3 位作者 Siming Guo Chao Li Hongyan Yue Donghong Li 《Journal of Rare Earths》 2025年第6期1293-1302,I0008,共11页
The anisotropy and tension-compression asymmetry of rare-earth magnesium(Mg-RE) alloys have attracted significant attention.In this study,the room-temperature tensile anisotropy and tensioncompression asymmetry of the... The anisotropy and tension-compression asymmetry of rare-earth magnesium(Mg-RE) alloys have attracted significant attention.In this study,the room-temperature tensile anisotropy and tensioncompression asymmetry of the extruded Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy were investigated utilizing techniques such as optical microscopy(OM),electron backscatter diffraction(EBSD),and viscoplastic self-consistent(VPSC) modeling.Among the tensile samples,the TO sample(with axis parallel to extrusion direction) exhibits the greatest tensile yield strength(TYS) of 270 MPa and ultimate tensile strength(UTS) of 336 MPa,the T45 sample(with axis inclined at a 45° angle to extrusion direction) and T90 sample(with axis perpendicular to extrusion direction) exhibit lower TYS and UTS.The CO sample shows a slightly greater compressive yield strength(CYS) of 290 MPa.The ratio of TYS/CYS is approximately 1.07.This study significantly adjusts the VPSC hardening parameters through the Schmid factor of deformation mechanisms in Mg-RE alloy,particularly increasing the τ0(critical resolved shear stress,CRSS) and τ1values for basalslip and {10-12} twinning.The ratios of CRSS for other deformation mechanisms to basalslip are approximately as follows:CRSSTwin/CRSSBas=2,CRSSpri/CRSSBas≈2.7and CRSSPyr/CRSSBas≈3.3,while these ratios in traditional alloys are generally higher.The stress-strain curves and pole figures obtained from the modified VPSC model demonstrate excellent agreement with experimental results.According to the VPSC simulation results,the primary factor contributing to tensile anisotropy is the disparity in the activation levels of slip systems.The inclusion of rare-earth elements mitigates the tension-compression asymmetry by reducing the difference of CRSS between different deformation mechanisms. 展开更多
关键词 Rare earths Mg-RE alloy Tensile anisotropy tension-compression asymmetry VPSC Deformation mechanisms
原文传递
Effect of unusual texture on tension-compression asymmetry for Mg-RE alloy by viscoplastic self-consistent modeling
2
作者 Xiaohua Zhang Rui Zhou +2 位作者 Chao Li Hongyan Yue Qiang Chen 《Journal of Magnesium and Alloys》 2025年第6期2800-2812,共13页
The tension-compression asymmetry presents notable challenges for the application of magnesium alloys in many fields.In this study,the solid-solution treated Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy's tension-compression a... The tension-compression asymmetry presents notable challenges for the application of magnesium alloys in many fields.In this study,the solid-solution treated Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy's tension-compression asymmetry was examined using optical microscope(OM),x-ray diffraction(XRD),viscoplastic self-consistent(VPSC)modeling,and electron backscatter diffraction(EBSD).The VPSC hardening parameters were significantly adjusted based on the Schmid factor of deformation modes in rare earth magnesium(Mg-RE)alloy,which came from the EBSD data.Excellent agreement was found between the modified VPSC model's calculation results,especially the stress-strain curves and pole figures.The alloy exhibited good strength with a negligible tension-compression asymmetry and an impressive 0.98 ratio of compressive yield strength to tensile yield strength(CYS/TYS).The main cause could be attributed to the unusual texture of(11-20)<0001>in alloy,which eliminated the imbalance in tension and compression deformation by having a negative effect on the activation of{10-12}twinning in tensile and a positive effect in compressive deformation.The activation level of{10-12}twinning was 0.37 and 0.40calculated by VPSC model,in the plastic deformation of tension and compression,respectively;in the tensile and compression samples,the EBSD data indicated that approximately 31.9%and 31.1%(area proportion)of the grains were deformed with twins,respectively.Both tension and compression deformation showed the{10-12}twinning in the early stage of deformation,which transformed to{11-22}twinning in the later stage.The considerable activation of pyramidal during the later stages of deformation endowed the alloy with good ductility. 展开更多
关键词 Mg-RE alloy tension-compression asymmetry TEXTURE VPSC Deformation modes
在线阅读 下载PDF
Statistical investigation on the tension-compression asymmetry of slip behavior and plastic heterogeneity in an aged Mg-10Y sheet
3
作者 Ran Ni Huashen Liu +3 位作者 Shen Hua Hao Zhou Ying Zeng Dongdi Yin 《Journal of Magnesium and Alloys》 2025年第8期3880-3895,共16页
The grain-scale tension-compression(T-C)asymmetric slip behavior and geometrically necessary dislocation(GND)density in an aged and twin-free Mg-10Y sheet were statistically studied using slip trace analysis and elect... The grain-scale tension-compression(T-C)asymmetric slip behavior and geometrically necessary dislocation(GND)density in an aged and twin-free Mg-10Y sheet were statistically studied using slip trace analysis and electron backscatter diffraction(EBSD)analysis.A significantly asymmetric slip activity,i.e.,higher tensile slip activity and proportion of non-basal slip,was manifested.Prismatic〈a〉(37.1%)and basal〈a〉(27.6%)slips dominated the tensile deformation,followed by pyramidalⅡ〈c+a〉slip(20.0%).While during compression,basal〈a〉slip(61.9%)was the most active slip mode,and only 6.9% pyramidalⅡ〈c+a〉slip was observed.The critical resolved shear stress(CRSS)ratio was estimated based on~800 sets of the identified slip traces,which suggested that the CRSS_(pyrⅡ)/CRSS_(bas)for compression was~3 times than that of tension.The pyramidalⅡ〈c+a〉slip was more active when the slip plane was under tension than under compression,which was consistent with the calculated asymmetric CRSS_(pyrⅡ)/CRSS_(bas).The activity of multiple slip,cross slip and slip transfer,as well as the GND density were also T-C asymmetric.This work thoughtfully demonstrated the T-C asymmetric slip behavior and plastic heterogeneity in Mg alloys which was believed to be responsible for the macroscopic T-C asymmetry when twinning was absent.The present statistical results are valuable for validating and/or facilitating crystal plasticity simulations. 展开更多
关键词 Mg alloy tension-compression asymmetry Slip behavior Pyramidal slip GND density
在线阅读 下载PDF
Tension-compression asymmetry of pyramidal dislocations in magnesium
4
作者 Zikun Li Chuanlong Xu +3 位作者 Xiaobao Tian Wentao Jiang Qingyuan Wang Haidong Fan 《Journal of Magnesium and Alloys》 2025年第7期3198-3208,共11页
Pyramidal dislocations are important for ductility enhancement of magnesium alloys.In this work,molecular dynamics simulations were employed to study the gliding behavior of pyramidal(c+a)dislocations under c-axis com... Pyramidal dislocations are important for ductility enhancement of magnesium alloys.In this work,molecular dynamics simulations were employed to study the gliding behavior of pyramidal(c+a)dislocations under c-axis compressive loading and tensile loading.The Peierls stress of Py-Ⅰ dislocation shows strong tension-compression asymmetry.However,no tension-compression asymmetry is seen on the Py-Ⅱ dislocation and basal dislocation.The tension-compression asymmetry origins from the asymmetry of partial dislocations of Py-Ⅰ dislocation,which leads to the dislocation core contracted under c-axis compressive loading and expanded under tensile loading.By analyzing the forces acting on the partial dislocations,we defined a neutral direction,which deviates from the full dislocation Burgers vector by 70.3°.The neutral direction is dependent on the ratio of lattice stresses of partial dislocations.If the shear stress is applied along the neutral direction,tension-compression asymmetry is eliminated and the dislocation core is un-contracted/un-expanded.The neutral direction of symmetrical dislocations(Py-Ⅱ dislocation and basal dislocation)is just the full dislocation Burgers vector.The tension-compression asymmetry and dislocation core contraction/expansion have an important influence on the dislocation behaviors,such as cross-slip,decomposition,basaltransition and mobility,which can be used to explain the mechanical behaviors of Mg single-crystals compressed along c-axis. 展开更多
关键词 tension-compression asymmetry Pyramidal dislocation MAGNESIUM Molecular dynamics
在线阅读 下载PDF
Tension-compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure 被引量:3
5
作者 Yujiao Wang Yun Zhang Haitao Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期92-103,共12页
We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bim... We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression,respectively,which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa,respectively.Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T-C asymmetry.However,due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression,the bimodal structure possesses a lower T-C asymmetry(0.68)compared to the uniform structure(0.56).Multiple extension twins occur during deformation,and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains.Furthermore,the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains. 展开更多
关键词 bimodal structure deformation mechanism Hall-Petch relationship tension-compression asymmetry twin variant selection
在线阅读 下载PDF
A user-friendly yield criterion for metals exhibiting tension-compression asymmetry 被引量:2
6
作者 Lei CHEN Weidong WEN Hongjian ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2602-2609,共8页
The aim of this paper is to model the yielding asymmetry of pressure-insensitive metals,including but not limited to Ni3 Al alloys.The main focuses are put on the flexibility and manipulative convenience.The parameter... The aim of this paper is to model the yielding asymmetry of pressure-insensitive metals,including but not limited to Ni3 Al alloys.The main focuses are put on the flexibility and manipulative convenience.The parameters of theory are kept to a minimum and can be determined by as few tests as possible.These requirements are fulfilled by constructing a yield function using the second and third-invariants of a linearly transformed stress tensor.The proposed yield criterion has a simple mathematical form and has only seven parameters when used in three-dimensional stresses.Compared with existing theories,the new yield criterion has much fewer parameters,which makes it very convenient for practical applications.The coefficients of the criterion are identified by an error minimization procedure.Applications to a Ni3 Al based intermetallic alloy as well as a Cu-Al-Be shape memory alloy and comparison to other criteria show that the proposed criterion has nearly the same predictive ability and flexibility with other criteria.The proposed yield criterion can estimate the coefficients by using less data,which is a big advantage compared with other similar theories,especially when there is a limited number of experimental data. 展开更多
关键词 Ni3Al based alloy Plastic anisotropy Plastic deformation tension-compression asymmetry Yield criterion Yield stress
原文传递
An improved yield criterion characterizing the anisotropic and tension-compression asymmetric behavior of magnesium alloy 被引量:2
7
作者 Zhigang Li Haifeng Yang +1 位作者 Jianguang Liu Fu Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第2期612-628,共17页
A novel yield criterion based on CPB06 considering anisotropic and tension-compression asymmetric behaviors of magnesium alloys was derived and proposed(called M_CPB06).This yield criterion can simultaneously predict ... A novel yield criterion based on CPB06 considering anisotropic and tension-compression asymmetric behaviors of magnesium alloys was derived and proposed(called M_CPB06).This yield criterion can simultaneously predict the yield stresses and the Lankford ratios at different angles(if any)under uniaxial tension,compression,equal-biaxial and equal-compression conditions.Then,in order to further describe the anisotropic strain-hardening characteristics of magnesium alloy,the proposed M_CPB06 criterion was further evolved to the M_CPB06ev model by expressing the parameters of the M_CPB06 model as functions of the plastic strain.As the model was developed,the stresses and Lankford ratios of AZ31B and ZK61M magnesium alloys at different angles under tensile,compressive and through-thickness compressive conditions were used to calibrate the M_CPB06/M_CPB06ev and the existing CPB06ex2 model.Calibration results reveal that compared with the CPB06ex2 yield criterion with equal quantity of coefficients,the M_CPB06 criterion exhibits certain advancement,and meanwhile the M_CPB06ev model can relatively accurately predict the change of the yield locus with increase of the plastic strain.Finally,the M_CPB06ev model was developed through UMAT in LS-DYNA.Finite element simulations using the subroutine were conducted on the specimens of different angles to the rolling direction under tension and compression.Simulation results were highly consistent with the experimental results,demonstrating a good reliability and accuracy of the developed subroutine. 展开更多
关键词 Magnesium alloy ANISOTROPY tension-compression asymmetry Improved yield criterion UMAT
在线阅读 下载PDF
Dislocation me diate d dynamic tension-compression asymmetry of a Ni_(2)CoFeV_(0.5)Mo_(0.2) medium entropy alloy 被引量:1
8
作者 Ao Meng Xiang Chen +2 位作者 Yazhou Guo Yiping Lu Yonghao Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期204-218,共15页
Although tension-compression(T-C)asymmetry in yield strength was rarely documented in coarse-grained face centered cubic(FCC)metals as critical resolved shear stress(CRSS)for dislocation slip differs little between te... Although tension-compression(T-C)asymmetry in yield strength was rarely documented in coarse-grained face centered cubic(FCC)metals as critical resolved shear stress(CRSS)for dislocation slip differs little between tension and compression,the T-C asymmetry in strength,i.e.,higher strength when loaded in compression than in tension,was reported in some FCC high entropy alloys(HEAs)due to twinning and phase transitions activated at high strain regimes in compression.In this paper,we demonstrate a reversed and atypical tension-compression asymmetry(tensile strength markedly exceeds compressive strength)in a non-equiatomic FCC Ni_(2)CoFeV_(0.5)Mo_(0.2) medium entropy alloy(MEA)under dynamic loading,wherein dislocation slip governs dynamic deformation without twins or phase transitions.The asymme-try can be primarily interpreted as higher CRSS and more hard slip modes(lower average Schmid factor)activated in grains under dynamic tension than compression.Besides,larger strain rate sensitivity in dy-namic tension overwhelmingly contributes to the higher flow stress,thanks to the occurrence of more immobile Lomer-locks,narrower spacing of planar slip bands and higher dislocation density.This finding may provide some insights into designing MEAs/HEAs with desired properties under extreme conditions such as blast,impact and crash. 展开更多
关键词 Medium entropy alloy Dynamic deformation tension-compression asymmetry Slip trace analysis EBSD and TEM
原文传递
Fatigue Properties of Plain Concrete under Triaxial Constant-Amplitude Tension-Compression Cyclic Loading 被引量:1
9
作者 宋玉普 曹伟 孟宪宏 《Journal of Shanghai University(English Edition)》 CAS 2005年第2期127-133,共7页
Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper st... Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper stress ranged from 0. 20f t to 0.65f t. Three constant lateral pressures were 0.1f c, 0.2f c and 0.3f c respec tively. Based on the results, the th ree-stage evolution rule of the fatigue stiffness, maximum(minimum) longitudina l strain and damage were analyzed, and a unified S-N curve to calculate fati gue strength factors was worked out. The results show that the fatigue strength and fa tigue life under triaxial constant-amplitude tension-compression cyclic loadin g are smaller than those under uniaxial fatigue condition. Moreover, the secondary strain creep rate is related to the fatigue life, a formula for describing thei r relation was derived. The investigation of this paper can provide information for the fatigue design of concrete structures. 展开更多
关键词 CONCRETE triaxial constant-amplitude tension-compression cyclic loading fati gue strength fatigue life.
在线阅读 下载PDF
Experimental Study on Performance of Plain Concrete Due to Triaxial Variable-Amplitude Tension-Compression Cyclic Loading
10
作者 曹伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第3期104-109,共6页
An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the ... An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the upper level ranges between 0. 20f and 0. 55f., while the constant lateral pressure is 0. 3 f . The specimen failure mode, the three-stage evolution rule of the longitudinal strains and the damage evolution law under cyclic loading were analyzed. Furthermore, Miner's rule is proved not to be applicable to the cyclic loading conditions, hereby, a nonlinear cumulative damage model was established. Based on the model the remaining fatigue life was evaluated. The comparison whh the experiment resuhs shaws that the model is of better precision and applicability. 展开更多
关键词 CONCRETE triaxial tension-compression Cyclic loading three-stage evolution rule nonlinear cumulative damage model
在线阅读 下载PDF
Generalization of Hill's yield criterion to tension-compression asymmetry materials 被引量:8
11
作者 CHEN Lei WEN WeiDong CUI HaiTao 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第1期89-97,共9页
This paper is devoted to developing a yield criterion that can model the asymmetry and anisotropy in yielding of pressure insensitive metals,in terms of accuracy and simplicity of formulation.First,a new isotropic yie... This paper is devoted to developing a yield criterion that can model the asymmetry and anisotropy in yielding of pressure insensitive metals,in terms of accuracy and simplicity of formulation.First,a new isotropic yield criterion,which can model the asymmetry in yielding of pressure insensitive metals,is proposed.Further,using Cazacu's generalizations to anisotropic conditions of the invariants of the deviatoric stress,the proposed isotropic yield criterion is extended to orthotropy.The proposed anisotropic criterion has a quite simple form,and the number of material constants involved is only half of that of Cazacu's(2004) yield criterion.Compared to Hill's(1948) yield criterion,the proposed anisotropic yield criterion has three additional constants,which are used to model the tension-compression asymmetry of materials.All the material constants involved in the criterion can be determined by simple tests.The proposed criterion reduces to Hill's(1948) yield criterion if the tensile and compressive yield stresses are equal.In other words,the proposed anisotropic yield criterion can be considered as an extension of Hill's(1948) criterion to tension-compression asymmetry materials.The anisotropic yield criterion is used to describe the plastic response of Cu-Al-Be shape memory alloy(data after Laydi and Lexcellent) and Ni3Al based intermetallic alloy IC10 sheets.It is shown that the proposed yield criterion can describe very well the asymmetry and anisotropy observed in those materials. 展开更多
关键词 plastic anisotropy TWINNING tension-compression asymmetry yield criterion shape memory alloy intermetallic alloy
原文传递
Buckling morphology evolution of thin films on non-linear elastic substrates
12
作者 Andi Lai Di Ou +1 位作者 Jun Liao Guo Fu 《Acta Mechanica Sinica》 2025年第2期176-183,共8页
Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkl... Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkle of films on non-linear elastic substrates has received less attention.In this article,a unique wrinkle evolution of the film-substrate system with a J-shaped non-linear stress-strain relation is reported.The result shows that a concave hexagonal array pattern is formed with the shrinkage strain of the film-substrate systems developing.As the interconnection of hexagonal arrays,a unit cell ridge network appears with properties such as chirality and helix.The subparagraph maze pattern formed with high compression is mainly composed of special single-cell ridge networks such as spiral single cores,chiral double cores,and combined multi-cores.This evolutionary model is highly consistent with the results of experiments,and it also predicts wrinkle morphology that has not yet been reported.These findings can serve as a novel explanation for the surface wrinkle of biological soft tissue,as well as provide references for the preparation of artificial biomaterials and programmable soft matter. 展开更多
关键词 Non-linear elastic substrate Chiral ridge Spiral unit cell tension-compression asymmetry Wrinkle morphological evolution
原文传递
Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets 被引量:12
13
作者 Yanfu Chai Yan Song +7 位作者 Bin Jiang Jie Fu Zhongtao Jiang Qingshan Yang Haoran Sheng Guangsheng Huang Dingfei Zhang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE 2019年第4期547-554,共8页
The microstructures and mechanical properties of the composite extruded AZ31/AZ31 and AZ31/4047 Al sheets were investigated and made a comparison to the conventional extruded AZ31 sheet.Owing to the introduced intense... The microstructures and mechanical properties of the composite extruded AZ31/AZ31 and AZ31/4047 Al sheets were investigated and made a comparison to the conventional extruded AZ31 sheet.Owing to the introduced intense shear deformation at the interface during the composite extrusion,grain refinement and tilted texture were detected in AZ31 layers of the AZ31/AZ31 and AZ31/4047 Al sheets,while the conventional extruded AZ31 sheet exhibited a relative coarse,inhomogeneous microstructure and strong basal texture.The compressiontension yield ratio was increased gradually from the AZ31 to the AZ31/AZ31 and AZ31/4047 Al sheets.Besides,the AZ31/4047 Al sheet could successfully accomplish the whole bending forming process at room temperature,while the AZ31 and AZ31/AZ31 sheets were both bend-formed to failure with significant cracks in the outer tensile region under the identical bending parameters.Moreover,under the same bending strain,both the outward offset degree of strain neutral layer and the sheet thickening were more serious in the AZ31/4047 Al composite sheet than those of the AZ31 and AZ31/AZ31 sheets.The foremost reason was the quite wide gap of material properties between Mg alloy AZ31 layer(tensile loading in the outer region)and Al 4047 layer(compressive loading in the inner region). 展开更多
关键词 Mg alloy sheet Composite extrusion tension-compression yield asymmetry BENDABILITY
在线阅读 下载PDF
Fatigue damage evaluation by metal magnetic memory testing 被引量:5
14
作者 王慧鹏 董丽虹 +1 位作者 董世运 徐滨士 《Journal of Central South University》 SCIE EI CAS 2014年第1期65-70,共6页
Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of... Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of Hp(x),throughout the fatigue process were presented and analyzed.Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading; Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles,both Hp(y) and Hp(x) curves were stable after that,the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation.Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure.The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue.In initial and crack developing stages,the characteristics increased significantly due to dislocations increase and crack propagation,respectively.In stable stage,the characteristics remained constant as a result of dislocation blocking,K value ranged from 20 to 30 A/(m·mm)-1,and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work.After failure,both abnormal peaks of Hp(y) and peak of Hp(x) reversed,K value was 133 A/(m·mm)-1 and Hp(x)M was-640 A/m.The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue,so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing(MMMT). 展开更多
关键词 metal magnetic memory testing MMMT signal tension-compression fatigue test feature extraction
在线阅读 下载PDF
Effect Analysis of High Strain Rate and Anisotropy on Tension⁃Compression Asymmetry of Aluminum Alloy 7050 被引量:2
15
作者 FU Xiuli SHI Qihang +1 位作者 WANG Hui PAN Yongzhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第3期377-384,共8页
Using the devices of split Hopkinson tension bar(SHTB)and split Hopkinson pressure bar(SHPB),the dynamic tension and compression experiments in three typical forming directions(rolling direction(RD),transverse directi... Using the devices of split Hopkinson tension bar(SHTB)and split Hopkinson pressure bar(SHPB),the dynamic tension and compression experiments in three typical forming directions(rolling direction(RD),transverse direction(TD)and normal direction(ND))were carried out at strain rates of 1000,2000 and 4000 s-1,respectively.From the microscopic point of view,the effect of strain rate and anisotropy on tension compression asymmetry of aviation aluminum alloy 7050 was studied by scanning electron microscope(SEM),metallographic microscope and electron backscatter diffraction(EBSD).The results showed that there was obvious asymmetry between tension and compression,especially that the yield strength of the material in tension was higher than that in compression.The asymmetry in the elastic stage of tension-compression was weaker and the asymmetry in the strengthening stage was stronger with the increase of strain rate.At the same strain rate,the changing trend of the flow stress was distinct under different orientations of tension and compression,which was related to the stress direction of the grains.According to EBSD grain orientation analysis and raw material texture pole figure analysis,it was found that the larger the difference in the degree of grain refinement during tension and compression,the larger the macro-flow stress difference. 展开更多
关键词 aluminum alloy TEXTURE high strain rate ANISOTROPY tension-compression asymmetry
在线阅读 下载PDF
ANALYTICAL SOLUTION FOR BENDING BEAM SUBJECT TO LATERAL FORCE WITH DIFFERENT MODULUS
16
作者 姚文娟 叶志明 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第10期1107-1117,共11页
A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress a... A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure. 展开更多
关键词 different tension-compression modulus neutral axis beam subjected to lateral force analytical solution
在线阅读 下载PDF
THE NEW CRITERIA OF ELASTIC AND FATIGUE FAILURE IN THE COMPONENT OF COMPLEX STRESS STATES
17
作者 胡铸华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第11期1047-1054,共8页
In this paper, a total criterion on elastic and fatigue failure in complex stress, that is. octahedral stress strength theory on dynamic and static states on the basis of studying modern and classic strength theories.... In this paper, a total criterion on elastic and fatigue failure in complex stress, that is. octahedral stress strength theory on dynamic and static states on the basis of studying modern and classic strength theories. At the same time, an analysis of an independent and fairly comprehensive theoretical system is set up. It gives generalized failure factor by 36 materials and computative theory of the 11 states of complex stresses on a point, and derives the operator equation on generalized allowable strength and a computative method for a total equation can be applied to dynamic and static states. It is illustrated that the method has a good exactness through computation of eight examples of engineering. Therefore, the author suggests applying it to engineering widely. 展开更多
关键词 the strength theory on octahedral stresses the generalized failure factor of materials tension-compression ratio yield-strength ratio the factor of engineering design the operator ] for generalized allowable strength of materials
在线阅读 下载PDF
桩海地区的走滑和挤压构造特征
18
作者 张明振 印兴耀 《油气地球物理》 2005年第1期48-52,共5页
桩海地区是沾化和黄河口凹陷的结合部,特殊构造的位置造就了该区复杂的构造特征。本文在系统分析地震及钻井资料的基础上,着重研究了其走滑和挤压构造特征。初步研究表明:该区印支期以宽缓的褶皱为主要特征;燕山期发育大型走滑构造,伴... 桩海地区是沾化和黄河口凹陷的结合部,特殊构造的位置造就了该区复杂的构造特征。本文在系统分析地震及钻井资料的基础上,着重研究了其走滑和挤压构造特征。初步研究表明:该区印支期以宽缓的褶皱为主要特征;燕山期发育大型走滑构造,伴有挤压构造;喜玛拉雅期以拉张和走滑构造运动为主,局部有挤压构造现象。 展开更多
关键词 走滑构造 剪压构造带 挤压构造 拱张背斜 桩海地区
在线阅读 下载PDF
乌尔禾地区风城组裂缝控藏作用及展布规律 被引量:2
19
作者 孟祥超 丁梁波 +3 位作者 刘占国 李亚哲 朱超 芦淑萍 《大庆石油地质与开发》 CAS CSCD 北大核心 2012年第2期39-42,共4页
乌尔禾地区风城组油藏具有典型的裂缝-孔隙双重介质特征,属低孔-特低渗储层,基质孔隙对产能的贡献较小,储集空间和渗流通道主要为裂缝。裂缝主要分为构造缝、泄水缝2大类,整体以构造缝为主。裂缝展布与断裂相关性较强,近断裂带裂... 乌尔禾地区风城组油藏具有典型的裂缝-孔隙双重介质特征,属低孔-特低渗储层,基质孔隙对产能的贡献较小,储集空间和渗流通道主要为裂缝。裂缝主要分为构造缝、泄水缝2大类,整体以构造缝为主。裂缝展布与断裂相关性较强,近断裂带裂缝密度较大,主要为构造缝(张性构造缝、压性构造缝)发育带;稍远断裂带主要为张性构造缝发育带,其中与深湖-半深湖区沉凝灰岩发育带叠合部位为泄水缝-张性构造缝沟通带。泄水缝-张性构造缝沟通带对产能的贡献最大。裂缝预测成果得到油田现场钻井充分验证。成果应用于新疆油田乌尔禾地区风城组评价井位部署,油田现场应用效果良好,为新疆油田深部储层增储上产提供了技术支撑。 展开更多
关键词 张性构造缝 压性构造缝 泄水缝 3Dmove曲率法 评价部署
在线阅读 下载PDF
Performance analysis of vertical smart isolator based on magnetorheological elastomer
20
作者 Fan Zeng Feng Zhou +4 位作者 Jiangtao Li Meng Li Qi Wang Ning Ma Xufeng Dong 《International Journal of Smart and Nano Materials》 2024年第4期835-854,共20页
As one of the field-dependent smart materials whose stiffness and damping properties can change instantaneously and reversibly,magnetorheological elastomer(MRE)has been extensively utilized on base isolation for vibra... As one of the field-dependent smart materials whose stiffness and damping properties can change instantaneously and reversibly,magnetorheological elastomer(MRE)has been extensively utilized on base isolation for vibration reduction.However,most previous studies have focused on the shear dynamic performance of MRE isolators,and there are few reports on the vertical extrusion performance of basic isolators within construction equipment.In this paper,MRE materials with strong bearing capacity and suitable vertical stiffness were fabricated by comprehensively considering the selection of raw materials,particle ratio,and sample size.The tension-compression viscoelasticity of the prepared MRE under varying magnetic fields and strain amplitudes was experimentally evaluated using an MRE axial MR testing system.Eventually,a single-degree-of-freedom dynamic test rig for vibration isolation of equipment in buildings,which integrates a vertical isolator with MRE as the core component,was constructed to perform a series of experimental investigations on the alterable frequency vibration capability of the designed MRE vertical isolator.The test results reveal that the controllable stiffness-damping properties of the prepared MRE in the axial tension-compression mode can enable the developed vertical isolator to exhibit superior frequency shifting and vibration attenuating characteristics in structural vibration. 展开更多
关键词 Magnetorheological elastomer vertical isolator tension-compression viscoelasticity frequency shifting vibration attenuating
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部