The effects of tension on vortex-induced vibration (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimentally investigated in this paper. The results show tha...The effects of tension on vortex-induced vibration (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimentally investigated in this paper. The results show that elevated tension suppresses fluctuations of maximum displacement with respect to flow velocity and makes chaotic VIV more likely to appear. With respect to periodic VIV, if elevated tension is applied, the dominant vibration frequency in the in-line (IL) direction will switch from a fundamental vibration frequency to twice the value of the fundamental vibration frequency, which results in a ratio of the dominant vibration frequency in the IL direction to that in the cross-flow direction of 2.0. The suppression of the elevated tension in the fluctuation of the maximum displacement causes the axial tension to become an active control parameter for the VIV maximum displacement of a tension-dominated long riser or tether of an engineering structure in deep oceans. However, the axial tension must be optimized before being used since the high dominant vibration frequency due to the elevated tension may unfavorably affect the fatigue life of the riser or tether.展开更多
To prevent buckling distortions of thin-walled elements, Low Stress No Distortion welding techniques have been pioneered and developed for product engineering and component manufacturing of aerospace structures with m...To prevent buckling distortions of thin-walled elements, Low Stress No Distortion welding techniques have been pioneered and developed for product engineering and component manufacturing of aerospace structures with material thickness less than 4 mm. In this paper, the nature of Low Stress No Distortion (LSND) welding techniques using thermal tensioning effects is described and special emphases are given to the mechanism of localized thermal tensioning effect. The fundamental principle of Low Stress No Distortion welding is to create active in-process control of incompatible (inherent) plastic strains and stresses formation during welding to achieve distortion-free results implying that no post weld costly reworking operations for distortion correction is required. Finite element analysis is applied to predict and optimize the localized thermal tensioning technique with a trailing spot heat sink coupled to the welding heat source. Comparisons of the thermal elastic-plastic stress-strain cycles are given between conventional gas tungsten arc welding and GTAW with a trailing spot heat sink.展开更多
Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flow...Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flows, is critical to ensure personnel and asset safety. In this study, a special global coordinate-based FEM rod model was adopted to identify and quantify the effects of internal flow and hydrostatic pressure on both flexible and deepwater steel catenary risers, with emphasis on the latter. By incorporating internal flow induced forces into the model, it was found that the internal flow contributes a new term to the effective tension expression. For flexible risers in shallow water, internal flow and hydrostatic pressure made virtually no change to effective tension by merely altering the riser wall tension. In deep water the internal pressure wielded a dominant role in governing the riser effective tension and furthering the static configuration, while the effect of inflow velocity was negligible. With respect to the riser seabed interaction, both the seabed support and friction effect were considered, with the former modeled by a nonlinear quadratic spring, allowing for a consistent derivation of the tangent stiffness matrix. The presented application examples show that the nonlinear quadratic spring is, when using the catenary solution as an initial static profile, an efficient way to model the quasi-Winkler-type elastic seabed foundation in this finite element scheme.展开更多
Strain rate sensitivity and tension/compression asymmetry of AZ31 magnesium alloy at different temperatures and strainrates were investigated.Both of mechanical behaviors are temperature dependent.Strain rate sensitiv...Strain rate sensitivity and tension/compression asymmetry of AZ31 magnesium alloy at different temperatures and strainrates were investigated.Both of mechanical behaviors are temperature dependent.Strain rate sensitivity increases with increasingtemperature.Thermally activated slip is the source of strain rate sensitivity.At the temperature below or near 373 K,strain ratesensitivity is very little.Tension/compression asymmetry in yielding decreases with increasing temperature.Twinning is the reasonof tension/compression asymmetry.At the temperature above or near 573 K,the material shows little tension/compressionasymmetry of the flow stress.展开更多
It is arguable that the development of reinforcing roof bolting systems has largely stagnated in recent times, primarily due to the prevailing industry view that few, if any, further improvements can be made to what c...It is arguable that the development of reinforcing roof bolting systems has largely stagnated in recent times, primarily due to the prevailing industry view that few, if any, further improvements can be made to what currently exists.However, this paper contends that reinforcing roof bolting systems can be further refined by considering both the specific manner by which horizontally bedded roof strata loses its natural self-supporting ability and the specific means by which reinforcing roof bolts act to promote or retain this natural self-supporting ability.The Australian coal industry has insisted on minimising bolt-hole diameter to maximise load transfer and on targeting full-encapsulation by any means necessary for many years.This has led to a significant, albeit unintended, consequence in terms of overall roof bolting effectiveness, namely increased resin pressures during bolt installation and the associated potential for opening bedding planes that may have, otherwise, remained closed during the bolt installation process.Given that the natural self-supporting ability of roof strata is strongly linked to whether bedding planes are open or closed, logically, minimising resin pressures should be a significant benefit.This paper focuses primarily on three key issues that relate directly to the function of the roof bolting system itself:(1) the importance of proper resin mixing in the context of maximising load transfer strength and stiffness,(2) the importance of minimising resin pressures developed during bolt installation, and(3) the importance of maximising the effectiveness of the available bolt pre-tension.All mine operators should be invested in improving the individual effectiveness of each installed roof bolt, even by relatively small incremental amounts, so this is an important topic for discussion within the mining community.展开更多
In the alloy with solute content higher than the limiting solubility,the solute atoms that have failed to dissolve will precipitate from the solid solution and form precipitations.In this study, the Portevin-Le Chatel...In the alloy with solute content higher than the limiting solubility,the solute atoms that have failed to dissolve will precipitate from the solid solution and form precipitations.In this study, the Portevin-Le Chatelier(PLC) effects in annealed 5456 and 5052 aluminum alloys with different precipitation contents have been investigated under different applied strain rates.The results suggest that precipitations have significant effect on the PLC effect and the more the precipitations are, the greater the influence is.Furthermore,the solute diffusion is pipe diffusion in 5052 alloy with lower precipitation content.However,for 5456 alloy with higher precipitation content,the diffusion is no longer the case but more complex.展开更多
During the installation of a pipe pile,the soil around the pile will be squeezed out. This paper deals with this squeezing effect of open-ended pipe piles using the cylindrical cavity expansion theory. The characteris...During the installation of a pipe pile,the soil around the pile will be squeezed out. This paper deals with this squeezing effect of open-ended pipe piles using the cylindrical cavity expansion theory. The characteristics of soil with different tension and compression moduli and dilation are involved by applying the elastic theory with different moduli and logarithmic strain. The closed-form solutions of the radius of the plastic region,the displacement of the boundary between the plastic region and the elastic region and the expansion pressure on the external surface of the pipe piles are obtained. When obtaining these solutions,the soil plug in the open-ended pipe pile is considered by employing an incremental filling ratio to quantify the degree of soil plugging. Moreover,the effects of the ratio of tension and compression moduli,angle of dilation and incremental filling ratio on the radius of the plastic region and the expansion pressure on the external surface of the pipe pile are investigated. The parametric analyses show that it is necessary and important to consider the difference between the tension modulus and compression modulus,dilation angle and incremental filling ratio for studying the squeezing effect of open-ended pipe pile installation. It is concluded that the analytical solutions presented in this paper are suitable for studying the squeezing effect of open-ended pipe piles.展开更多
Starting from the so-called “blue clearing” phenomenon, this paper establishes a link between disturbances of the Martian gravitational potential, the Allais effect of syzygy, astral influences and the Raman Stokes ...Starting from the so-called “blue clearing” phenomenon, this paper establishes a link between disturbances of the Martian gravitational potential, the Allais effect of syzygy, astral influences and the Raman Stokes effect. This phenomenon is apparently peculiar to the Martian atmosphere. Photographs of Mars taken in blue light normally show only the atmosphere itself and clouds high above the surface. On occasion of oppositions, however, blue photographs will penetrate in varying degrees to the surface of Mars. Curiously, a burst of brightness and storms then occur on Mars. The atmosphere and clouds can be seen and photographed at short wavelengths by Earth-based telescopes equipped with a Wratten 47 filter. It happens that the blue screen of the filter suddenly begins to disappear and that the Martian surface becomes visible. The exact mechanism that produces blue clearing when Earth is between the Sun and Mars is highly speculative. We believe that the “Allais syzygy effect” may explain this phenomenon. The opposition would generate a “gravito-electromagnetic tension”, which would spawn fluctuations in the gravitational potential of Mars, accompanied and linked to an electromagnetic effect. The outcome would be to trigger dust storms and exacerbate a disorderly excitement of molecules in the atmosphere. The thermal agitation facilitates the absorption of energy and the formation of small condensations that cause light scattering. Assuming that the Martian gravity decreased slightly, a Stokes Raman scattering would manifest at intramolecular level of the Martian atmosphere: the emitted photon has a lower energy than the absorbed photon. Therefore, it is mainly the waves corresponding to the spectral regions yellow, orange or red that are diffused, what eliminates short wavelengths. We deduce that the size of the inhomogeneities resulting from thermal excitation turns out to be greater than the length of the light waves of blue or purple regions of the spectrum.展开更多
Influence of different electric current modes (pulse and direct) on occurrence of the electroplastic effect under uniaxialtension in the coarse-grained alloys with martensite transformations is investigated. The mat...Influence of different electric current modes (pulse and direct) on occurrence of the electroplastic effect under uniaxialtension in the coarse-grained alloys with martensite transformations is investigated. The materials are shape memoryTi49.3Niso.7 alloy and metastable austenite transformation-induced plasticity (TRIP) steel. The paper contains experimentalresults of current impact on the "stress-strain" curves of the material. It has been taken an experimental measurement ofthe sample temperature during the test. It is shown that the shape of a stress-strain curves and type of the serrate plasticflow, connected with the martensitic transformation and electroplastic effect, depend on the current modes. Impact of pulsecurrent and direct current suppresses shape memory and TRIP effect.展开更多
Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents...Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.展开更多
Past eccentric contraction (ECC)-induced muscle injury reduces the severity of symptoms of subsequent muscle injury;this phenomenon is known as a repeated bout effect (RBE). It has been reported that increases in the ...Past eccentric contraction (ECC)-induced muscle injury reduces the severity of symptoms of subsequent muscle injury;this phenomenon is known as a repeated bout effect (RBE). It has been reported that increases in the duration of the interval between the first and second bouts are linked to weakening of the RBE. However, the histology following the attenuation of the RBE remains unclear. We examined the sustained effects of the second bout with regard to myofiber permeability and muscle force. Sixty-four male rats were randomly assigned to eight groups that varied in the number of exercise sessions and the duration of the interval between the first and second bouts: the non-ECC (Control);the single-injury (Post 1st bout);groups that were allowed to recover for 1, 2, and 4 weeks after a single injury (Pre 2nd bout_1w, Pre 2nd bout_2w, and Pre 2nd bout_4w);and groups that were subjected to second injuries 1, 2, and 4 weeks after the first (Post 2nd bout_1w, Post 2nd bout_2w, and Post 2nd bout_4w). The tibialis anterior was electrically stimulated in each ECC group. Twenty-four hours before muscle sampling, Evans blue dye (EBD) (a marker of myofiber damage) was administered. The maximal isometric contraction tension was measured immediately before sampling. The number of EBD-positive (+) fibers was determined via histological analysis. An RBE was revealed by functional examination at the 1- and 2-week and histological examination at the 1-, 2-, and 4-week time points (P < 0.05). In terms of myofiber permeability, prolongation of the interval before the second bout weakened this effect (P < 0.05). Experiments with 1-, 2-, and 4-week intervals indicated that prolongation of the interval before the second bout weakened the RBE with regard to myofiber permeability.展开更多
Morphology of dipalmitoyl phosphatidyl choline (DPPC)-cholesterol (Chol) mixed monolayer formed on water surface by dropping method was investigated using surface tension measurement (STm), Brewster angle microscopy (...Morphology of dipalmitoyl phosphatidyl choline (DPPC)-cholesterol (Chol) mixed monolayer formed on water surface by dropping method was investigated using surface tension measurement (STm), Brewster angle microscopy (BAM), and fluorescence microscopy (FM). STm showed strong condensation effect of Chol in fluidic DPPC monolayer. Excess area (S<sub>ex</sub>) from mean mixing state of DPPC and Chol was about twice larger than that by general compression method in the range from xC = 0.2 to 0.4 (xC: mole fraction of Chol). BAM and FM images showed clearly that the fluidic DPPC monolayer changed to condensed rigid monolayer due to the condensation effect of Chol. At more than xC = 0.3 DPPC-Chol mixed monolayer changed to condensed state similar to the Chol monolayer. These results support previous reports by compression method that Chol molecule demonstrates the strong condensation effect to the fluidic monolayer and also indicate that dropping method enables to form unique monolayer on the water surface.展开更多
基金supported by the Construction Technology Program of the Ministry of Transport (Grant 2013 318 740050)
文摘The effects of tension on vortex-induced vibration (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimentally investigated in this paper. The results show that elevated tension suppresses fluctuations of maximum displacement with respect to flow velocity and makes chaotic VIV more likely to appear. With respect to periodic VIV, if elevated tension is applied, the dominant vibration frequency in the in-line (IL) direction will switch from a fundamental vibration frequency to twice the value of the fundamental vibration frequency, which results in a ratio of the dominant vibration frequency in the IL direction to that in the cross-flow direction of 2.0. The suppression of the elevated tension in the fluctuation of the maximum displacement causes the axial tension to become an active control parameter for the VIV maximum displacement of a tension-dominated long riser or tether of an engineering structure in deep oceans. However, the axial tension must be optimized before being used since the high dominant vibration frequency due to the elevated tension may unfavorably affect the fatigue life of the riser or tether.
文摘To prevent buckling distortions of thin-walled elements, Low Stress No Distortion welding techniques have been pioneered and developed for product engineering and component manufacturing of aerospace structures with material thickness less than 4 mm. In this paper, the nature of Low Stress No Distortion (LSND) welding techniques using thermal tensioning effects is described and special emphases are given to the mechanism of localized thermal tensioning effect. The fundamental principle of Low Stress No Distortion welding is to create active in-process control of incompatible (inherent) plastic strains and stresses formation during welding to achieve distortion-free results implying that no post weld costly reworking operations for distortion correction is required. Finite element analysis is applied to predict and optimize the localized thermal tensioning technique with a trailing spot heat sink coupled to the welding heat source. Comparisons of the thermal elastic-plastic stress-strain cycles are given between conventional gas tungsten arc welding and GTAW with a trailing spot heat sink.
基金Supported by the National High-tech Research and Development Program of China (863 Program) under Grant No. 2010AA09Z303the Key Project of National Natural Science Foundation of China (Grant No. 50739004)the National Natural Science Foundation of China (Grant No. 11002135)
文摘Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flows, is critical to ensure personnel and asset safety. In this study, a special global coordinate-based FEM rod model was adopted to identify and quantify the effects of internal flow and hydrostatic pressure on both flexible and deepwater steel catenary risers, with emphasis on the latter. By incorporating internal flow induced forces into the model, it was found that the internal flow contributes a new term to the effective tension expression. For flexible risers in shallow water, internal flow and hydrostatic pressure made virtually no change to effective tension by merely altering the riser wall tension. In deep water the internal pressure wielded a dominant role in governing the riser effective tension and furthering the static configuration, while the effect of inflow velocity was negligible. With respect to the riser seabed interaction, both the seabed support and friction effect were considered, with the former modeled by a nonlinear quadratic spring, allowing for a consistent derivation of the tangent stiffness matrix. The presented application examples show that the nonlinear quadratic spring is, when using the catenary solution as an initial static profile, an efficient way to model the quasi-Winkler-type elastic seabed foundation in this finite element scheme.
文摘Strain rate sensitivity and tension/compression asymmetry of AZ31 magnesium alloy at different temperatures and strainrates were investigated.Both of mechanical behaviors are temperature dependent.Strain rate sensitivity increases with increasingtemperature.Thermally activated slip is the source of strain rate sensitivity.At the temperature below or near 373 K,strain ratesensitivity is very little.Tension/compression asymmetry in yielding decreases with increasing temperature.Twinning is the reasonof tension/compression asymmetry.At the temperature above or near 573 K,the material shows little tension/compressionasymmetry of the flow stress.
文摘It is arguable that the development of reinforcing roof bolting systems has largely stagnated in recent times, primarily due to the prevailing industry view that few, if any, further improvements can be made to what currently exists.However, this paper contends that reinforcing roof bolting systems can be further refined by considering both the specific manner by which horizontally bedded roof strata loses its natural self-supporting ability and the specific means by which reinforcing roof bolts act to promote or retain this natural self-supporting ability.The Australian coal industry has insisted on minimising bolt-hole diameter to maximise load transfer and on targeting full-encapsulation by any means necessary for many years.This has led to a significant, albeit unintended, consequence in terms of overall roof bolting effectiveness, namely increased resin pressures during bolt installation and the associated potential for opening bedding planes that may have, otherwise, remained closed during the bolt installation process.Given that the natural self-supporting ability of roof strata is strongly linked to whether bedding planes are open or closed, logically, minimising resin pressures should be a significant benefit.This paper focuses primarily on three key issues that relate directly to the function of the roof bolting system itself:(1) the importance of proper resin mixing in the context of maximising load transfer strength and stiffness,(2) the importance of minimising resin pressures developed during bolt installation, and(3) the importance of maximising the effectiveness of the available bolt pre-tension.All mine operators should be invested in improving the individual effectiveness of each installed roof bolt, even by relatively small incremental amounts, so this is an important topic for discussion within the mining community.
基金The financial support received from the National Natural Science Foundation of China under Grant Nos. 10732080,10872189
文摘In the alloy with solute content higher than the limiting solubility,the solute atoms that have failed to dissolve will precipitate from the solid solution and form precipitations.In this study, the Portevin-Le Chatelier(PLC) effects in annealed 5456 and 5052 aluminum alloys with different precipitation contents have been investigated under different applied strain rates.The results suggest that precipitations have significant effect on the PLC effect and the more the precipitations are, the greater the influence is.Furthermore,the solute diffusion is pipe diffusion in 5052 alloy with lower precipitation content.However,for 5456 alloy with higher precipitation content,the diffusion is no longer the case but more complex.
文摘During the installation of a pipe pile,the soil around the pile will be squeezed out. This paper deals with this squeezing effect of open-ended pipe piles using the cylindrical cavity expansion theory. The characteristics of soil with different tension and compression moduli and dilation are involved by applying the elastic theory with different moduli and logarithmic strain. The closed-form solutions of the radius of the plastic region,the displacement of the boundary between the plastic region and the elastic region and the expansion pressure on the external surface of the pipe piles are obtained. When obtaining these solutions,the soil plug in the open-ended pipe pile is considered by employing an incremental filling ratio to quantify the degree of soil plugging. Moreover,the effects of the ratio of tension and compression moduli,angle of dilation and incremental filling ratio on the radius of the plastic region and the expansion pressure on the external surface of the pipe pile are investigated. The parametric analyses show that it is necessary and important to consider the difference between the tension modulus and compression modulus,dilation angle and incremental filling ratio for studying the squeezing effect of open-ended pipe pile installation. It is concluded that the analytical solutions presented in this paper are suitable for studying the squeezing effect of open-ended pipe piles.
文摘Starting from the so-called “blue clearing” phenomenon, this paper establishes a link between disturbances of the Martian gravitational potential, the Allais effect of syzygy, astral influences and the Raman Stokes effect. This phenomenon is apparently peculiar to the Martian atmosphere. Photographs of Mars taken in blue light normally show only the atmosphere itself and clouds high above the surface. On occasion of oppositions, however, blue photographs will penetrate in varying degrees to the surface of Mars. Curiously, a burst of brightness and storms then occur on Mars. The atmosphere and clouds can be seen and photographed at short wavelengths by Earth-based telescopes equipped with a Wratten 47 filter. It happens that the blue screen of the filter suddenly begins to disappear and that the Martian surface becomes visible. The exact mechanism that produces blue clearing when Earth is between the Sun and Mars is highly speculative. We believe that the “Allais syzygy effect” may explain this phenomenon. The opposition would generate a “gravito-electromagnetic tension”, which would spawn fluctuations in the gravitational potential of Mars, accompanied and linked to an electromagnetic effect. The outcome would be to trigger dust storms and exacerbate a disorderly excitement of molecules in the atmosphere. The thermal agitation facilitates the absorption of energy and the formation of small condensations that cause light scattering. Assuming that the Martian gravity decreased slightly, a Stokes Raman scattering would manifest at intramolecular level of the Martian atmosphere: the emitted photon has a lower energy than the absorbed photon. Therefore, it is mainly the waves corresponding to the spectral regions yellow, orange or red that are diffused, what eliminates short wavelengths. We deduce that the size of the inhomogeneities resulting from thermal excitation turns out to be greater than the length of the light waves of blue or purple regions of the spectrum.
基金supported by the Competitiveness Program of the National Research Nuclear University MEPhI(Moscow Engineering Physics Institute)the Ministry of Education and Science of the Russian Federation No.02.A03.21.0005,27.08.2013,and RFBR(project#16-58-48001)
文摘Influence of different electric current modes (pulse and direct) on occurrence of the electroplastic effect under uniaxialtension in the coarse-grained alloys with martensite transformations is investigated. The materials are shape memoryTi49.3Niso.7 alloy and metastable austenite transformation-induced plasticity (TRIP) steel. The paper contains experimentalresults of current impact on the "stress-strain" curves of the material. It has been taken an experimental measurement ofthe sample temperature during the test. It is shown that the shape of a stress-strain curves and type of the serrate plasticflow, connected with the martensitic transformation and electroplastic effect, depend on the current modes. Impact of pulsecurrent and direct current suppresses shape memory and TRIP effect.
文摘Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.
文摘Past eccentric contraction (ECC)-induced muscle injury reduces the severity of symptoms of subsequent muscle injury;this phenomenon is known as a repeated bout effect (RBE). It has been reported that increases in the duration of the interval between the first and second bouts are linked to weakening of the RBE. However, the histology following the attenuation of the RBE remains unclear. We examined the sustained effects of the second bout with regard to myofiber permeability and muscle force. Sixty-four male rats were randomly assigned to eight groups that varied in the number of exercise sessions and the duration of the interval between the first and second bouts: the non-ECC (Control);the single-injury (Post 1st bout);groups that were allowed to recover for 1, 2, and 4 weeks after a single injury (Pre 2nd bout_1w, Pre 2nd bout_2w, and Pre 2nd bout_4w);and groups that were subjected to second injuries 1, 2, and 4 weeks after the first (Post 2nd bout_1w, Post 2nd bout_2w, and Post 2nd bout_4w). The tibialis anterior was electrically stimulated in each ECC group. Twenty-four hours before muscle sampling, Evans blue dye (EBD) (a marker of myofiber damage) was administered. The maximal isometric contraction tension was measured immediately before sampling. The number of EBD-positive (+) fibers was determined via histological analysis. An RBE was revealed by functional examination at the 1- and 2-week and histological examination at the 1-, 2-, and 4-week time points (P < 0.05). In terms of myofiber permeability, prolongation of the interval before the second bout weakened this effect (P < 0.05). Experiments with 1-, 2-, and 4-week intervals indicated that prolongation of the interval before the second bout weakened the RBE with regard to myofiber permeability.
文摘Morphology of dipalmitoyl phosphatidyl choline (DPPC)-cholesterol (Chol) mixed monolayer formed on water surface by dropping method was investigated using surface tension measurement (STm), Brewster angle microscopy (BAM), and fluorescence microscopy (FM). STm showed strong condensation effect of Chol in fluidic DPPC monolayer. Excess area (S<sub>ex</sub>) from mean mixing state of DPPC and Chol was about twice larger than that by general compression method in the range from xC = 0.2 to 0.4 (xC: mole fraction of Chol). BAM and FM images showed clearly that the fluidic DPPC monolayer changed to condensed rigid monolayer due to the condensation effect of Chol. At more than xC = 0.3 DPPC-Chol mixed monolayer changed to condensed state similar to the Chol monolayer. These results support previous reports by compression method that Chol molecule demonstrates the strong condensation effect to the fluidic monolayer and also indicate that dropping method enables to form unique monolayer on the water surface.