期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种基于时空频多维特征的短时窗口脑电听觉注意解码网络
1
作者 王春丽 李金絮 +2 位作者 高玉鑫 王晨名 张珈豪 《电子与信息学报》 北大核心 2025年第3期814-824,共11页
在鸡尾酒会场景中,听力正常的人有能力选择性地注意特定的说话者语音,但听力障碍者在这种场景中面临困难。听觉注意力解码(AAD)的目的是通过分析听者的脑电信号(EEG)响应特征来推断听者关注的是哪个说话者。现有的AAD模型只考虑脑电信... 在鸡尾酒会场景中,听力正常的人有能力选择性地注意特定的说话者语音,但听力障碍者在这种场景中面临困难。听觉注意力解码(AAD)的目的是通过分析听者的脑电信号(EEG)响应特征来推断听者关注的是哪个说话者。现有的AAD模型只考虑脑电信号的时域或频域单个特征或二者的组合(如时频特征),而忽略了时-空-频域特征之间的互补性,这在一定程度上限制了模型的分类能力,进而影响了模型在决策窗口上的解码精度。同时,已有AAD模型大多在长时决策窗口(1~5 s)中有较高的解码精度。该文提出一种基于时-空-频多维特征的短时窗口脑电信号听觉注意解码网络(TSF-AADNet),用于提高短时决策窗口(0.1~1 s)的解码精度。该模型由两个并行的时空、频空特征提取分支以及特征融合和分类模块组成,其中,时空特征提取分支由时空卷积块和高阶特征交互模块组成,频空特征提取分支采用基于频空注意力的3维卷积模块(FSA-3DCNN),最后将双分支网络提取的时空和频空特征进行融合,得到最终的听觉注意力二分类解码结果。实验结果表明,TSF-AADNet模型在听觉注意检测数据集KULeuven(KUL)和听觉注意检测的脑电和音频数据集(DTU)的0.1 s决策窗口下,解码精度分别为91.8%和81.1%,与最新的AAD模型一种基于时频融合的双分支并行网络(DBPNet)相比,分别提高了5.40%和7.99%。TSF-AADNet作为一种新的短时决策窗口的AAD模型,可为听力障碍诊断以及神经导向助听器研发提供有效参考。 展开更多
关键词 脑电信号 听觉注意力解码 短时决策窗口 时空频特征 神经导向助听器
在线阅读 下载PDF
基于特征再抽象(FRA)的多元时序预测方法 被引量:2
2
作者 王昊 周建涛 +1 位作者 郝昕毓 王飞宇 《计算机科学》 CSCD 北大核心 2023年第S02期650-657,共8页
科技领域的衍生行业因普遍存在强时间约束的特性而累积了海量的高维时间序列数据,严峻的数据压力导致传统的数据建模预测方法受制于数据规模和属性维度。支撑高质量的服务对大数据智能预测技术提出了更高的要求,如何在数据层面上实现预... 科技领域的衍生行业因普遍存在强时间约束的特性而累积了海量的高维时间序列数据,严峻的数据压力导致传统的数据建模预测方法受制于数据规模和属性维度。支撑高质量的服务对大数据智能预测技术提出了更高的要求,如何在数据层面上实现预测性能的提升是现阶段亟待解决的主要问题。针对上述问题,提出了针对多元时序数据的特征再抽象(Feature Re-Abstraction,FRA)算法,首先通过RobustSTL分解算法提取趋势性和季节性特征(Trend and Seasonality Features,TSFs),实现多元数据的特征二阶抽象,以“抽象即特征”替代传统“标签即特征”的提取策略,再通过Pearson相关系数的运算结果评估再抽象技术捕捉的TSFs与目标参数间的相关强度,证实TSF的数据价值。在FRA算法的基础上结合深度学习模型构建基于数据驱动的多元时序预测算法,通过预测效果验证FRA算法的有效性。实验结果表明,引入TSFs作为数据驱动模型的训练向量能够兼具数据降维、降噪及强相关特性地维持,从而避免模型过拟合并缓解模型欠拟合,提高时序预测算法的准确性和鲁棒性。 展开更多
关键词 多元时序数据 多元时序预测算法 特征再抽象 趋势性和季节性特征 相关性评估
在线阅读 下载PDF
基于卷积神经网络的虚拟机多类型负载联合预测方法 被引量:1
3
作者 余显 李振宇 +1 位作者 张广兴 谢高岗 《高技术通讯》 EI CAS 北大核心 2020年第9期884-892,共9页
虚拟机(VM)负载预测对提高云数据中心的资源利用率及用户服务质量起着至关重要的作用。然而现有的预测方法通常只考虑单一负载类型,在真实的云环境中,要么难以保障预测精度,要么因为需要同时建立多个预测模型而产生庞大的训练和预测时... 虚拟机(VM)负载预测对提高云数据中心的资源利用率及用户服务质量起着至关重要的作用。然而现有的预测方法通常只考虑单一负载类型,在真实的云环境中,要么难以保障预测精度,要么因为需要同时建立多个预测模型而产生庞大的训练和预测时间开销。针对现有预测方法无法有效兼顾多种类型负载场景下预测精度和时间开销的问题,提出了一种基于卷积神经网络(CNN)的多类型负载联合预测方法(TSF),能自动化构建并提取关键训练样本,并充分挖掘其中潜在的时序特征和空间特征,从而在考虑多种虚拟机负载情况下,能有效降低训练和预测时间成本,同时提高预测精度。 展开更多
关键词 云数据中心 虚拟机(VM) 多类型负载联合预测(tsf) 卷积神经网络(CNN) 局部特征增强
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部