A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.展开更多
Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper,...Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network(PNN) where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rocktypes. Overall the error of mis-classification is below 6%. When compared with other three classification algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms.展开更多
To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective clu...To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective cluster centers,a combination of density-based spatial clustering of applications with noise(DBSCAN)and Kmeans++is utilized.Subsequently,long short-term memory(LSTM)is employed to fit and yield optimized cluster centers with temporal information.Lastly,based on the new cluster centers and denoising ratio,a radius threshold is set,and noise points beyond this threshold are removed.The comprehensive denoising metrics F1_score of CBTDNN have achieved 0.8931,0.7735,and 0.9215 on the traffic sequences dataset,pedestrian detection dataset,and turntable dataset,respectively.And these metrics demonstrate improvements of 49.90%,33.07%,19.31%,and 22.97%compared to four contrastive algorithms,namely nearest neighbor(NNb),nearest neighbor with polarity(NNp),Autoencoder,and multilayer perceptron denoising filter(MLPF).These results demonstrate that the proposed method enhances the denoising performance of event-based sensors.展开更多
Lip reading is typically regarded as visually interpreting the speaker’s lip movements during the speaking.This is a task of decoding the text from the speaker’s mouth movement.This paper proposes a lip-reading mode...Lip reading is typically regarded as visually interpreting the speaker’s lip movements during the speaking.This is a task of decoding the text from the speaker’s mouth movement.This paper proposes a lip-reading model that helps deaf people and persons with hearing problems to understand a speaker by capturing a video of the speaker and inputting it into the proposed model to obtain the corresponding subtitles.Using deep learning technologies makes it easier for users to extract a large number of different features,which can then be converted to probabilities of letters to obtain accurate results.Recently proposed methods for lip reading are based on sequence-to-sequence architectures that are designed for natural machine translation and audio speech recognition.However,in this paper,a deep convolutional neural network model called the hybrid lip-reading(HLR-Net)model is developed for lip reading from a video.The proposed model includes three stages,namely,preprocessing,encoder,and decoder stages,which produce the output subtitle.The inception,gradient,and bidirectional GRU layers are used to build the encoder,and the attention,fully-connected,activation function layers are used to build the decoder,which performs the connectionist temporal classification(CTC).In comparison with the three recent models,namely,the LipNet model,the lip-reading model with cascaded attention(LCANet),and attention-CTC(A-ACA)model,on the GRID corpus dataset,the proposed HLR-Net model can achieve significant improvements,achieving the CER of 4.9%,WER of 9.7%,and Bleu score of 92%in the case of unseen speakers,and the CER of 1.4%,WER of 3.3%,and Bleu score of 99%in the case of overlapped speakers.展开更多
The lithofacies classification is essential for oil and gas reservoir exploration and development.The traditional method of lithofacies classification is based on"core calibration logging"and the experience ...The lithofacies classification is essential for oil and gas reservoir exploration and development.The traditional method of lithofacies classification is based on"core calibration logging"and the experience of geologists.This approach has strong subjectivity,low efficiency,and high uncertainty.This uncertainty may be one of the key factors affecting the results of 3 D modeling of tight sandstone reservoirs.In recent years,deep learning,which is a cutting-edge artificial intelligence technology,has attracted attention from various fields.However,the study of deep-learning techniques in the field of lithofacies classification has not been sufficient.Therefore,this paper proposes a novel hybrid deep-learning model based on the efficient data feature-extraction ability of convolutional neural networks(CNN)and the excellent ability to describe time-dependent features of long short-term memory networks(LSTM)to conduct lithological facies-classification experiments.The results of a series of experiments show that the hybrid CNN-LSTM model had an average accuracy of 87.3%and the best classification effect compared to the CNN,LSTM or the three commonly used machine learning models(Support vector machine,random forest,and gradient boosting decision tree).In addition,the borderline synthetic minority oversampling technique(BSMOTE)is introduced to address the class-imbalance issue of raw data.The results show that processed data balance can significantly improve the accuracy of lithofacies classification.Beside that,based on the fine lithofacies constraints,the sequential indicator simulation method is used to establish a three-dimensional lithofacies model,which completes the fine description of the spatial distribution of tight sandstone reservoirs in the study area.According to this comprehensive analysis,the proposed CNN-LSTM model,which eliminates class imbalance,can be effectively applied to lithofacies classification,and is expected to improve the reality of the geological model for the tight sandstone reservoirs.展开更多
Traditional protection methods are not suitable for hybrid(cable and overhead)transmission lines in voltage source converter based high-voltage direct current(VSC-HVDC)systems.Accordingly,this paper presents the robus...Traditional protection methods are not suitable for hybrid(cable and overhead)transmission lines in voltage source converter based high-voltage direct current(VSC-HVDC)systems.Accordingly,this paper presents the robust fault detection,classification,and location based on the empirical wavelet transform-Teager energy operator(EWT-TEO)and artificial neural network(ANN)for hybrid transmission lines in VSC-HVDC systems.The operational scheme of the proposed protection method consists of two loops①an EWT-TEO based feature extraction loop,②and an ANN-based fault detection,classification,and location loop.Under the proposed protection method,the voltage and current signals are decomposed into several sub-passbands with low and high frequencies using the empirical wavelet transform(EWT)method.The energy content extracted by the EWT is fed into the ANN for fault detection,classification,and location.Various fault cases,including the high-impedance fault(HIF)as well as noises,are performed to train the ANN with two hidden layers.The test system and signal decomposition are conducted by PSCAD/EMTDC and MATLAB,respectively.The performance of the proposed protection method is compared with that of the traditional non-pilot traveling wave(TW)based protection method.The results confirm the high accuracy of the proposed protection method for hybrid transmission lines in VSC-HVDC systems,where a mean percentage error of approximately 0.1%is achieved.展开更多
Modern leather industries are focused on producing high quality leather products for sustaining the market com-petitiveness. However, various leather defects are introduced during various stages of manufacturing proce...Modern leather industries are focused on producing high quality leather products for sustaining the market com-petitiveness. However, various leather defects are introduced during various stages of manufacturing process such as material handling, tanning and dyeing. Manual inspection of leather surfaces is subjective and inconsistent in nature;hence machine vision systems have been widely adopted for the automated inspection of leather defects. It is neces-sary develop suitable image processing algorithms for localize leather defects such as folding marks, growth marks, grain off, loose grain, and pinhole due to the ambiguous texture pattern and tiny nature in the localized regions of the leather. This paper presents deep learning neural network-based approach for automatic localization and classifica-tion of leather defects using a machine vision system. In this work, popular convolutional neural networks are trained using leather images of different leather defects and a class activation mapping technique is followed to locate the region of interest for the class of leather defect. Convolution neural networks such as Google net, Squeeze-net, RestNet are found to provide better accuracy of classification as compared with the state-of-the-art neural network architectures and the results are presented.展开更多
In this paper,we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques.We first discuss models such as recurrent neural networks(RNNs) a...In this paper,we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques.We first discuss models such as recurrent neural networks(RNNs) and convolutional neural networks(CNNs) that can effectively exploit variablelength contextual information,and their various combination with other models.We then describe models that are optimized end-to-end and emphasize on feature representations learned jointly with the rest of the system,the connectionist temporal classification(CTC) criterion,and the attention-based sequenceto-sequence translation model.We further illustrate robustness issues in speech recognition systems,and discuss acoustic model adaptation,speech enhancement and separation,and robust training strategies.We also cover modeling techniques that lead to more efficient decoding and discuss possible future directions in acoustic model research.展开更多
This paper proposes an accurate,efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network(CNN).The state-of-the-art robust CNN model(EfficientNet)is applie...This paper proposes an accurate,efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network(CNN).The state-of-the-art robust CNN model(EfficientNet)is applied to tunnel wall image recognition.Gaussian filtering,data augmentation and other data pre-processing techniques are used to improve the data quality and quantity.Combined with transfer learning,the generality,accuracy and efficiency of the deep learning(DL)model are further improved,and finally we achieve 89.96%accuracy.Compared with other state-of-the-art CNN architectures,such as ResNet and Inception-ResNet-V2(IRV2),the presented deep transfer learning model is more stable,accurate and efficient.To reveal the rock classification mechanism of the proposed model,Gradient-weight Class Activation Map(Grad-CAM)visualizations are integrated into the model to enable its explainability and accountability.The developed deep transfer learning model has been applied to support the tunneling of the Xingyi City Bypass in the high mountain area of Guizhou,China,with great results.展开更多
In recent years,Deep Learning models have become indispensable in several fields such as computer vision,automatic object recognition,and automatic natural language processing.The implementation of a robust and effici...In recent years,Deep Learning models have become indispensable in several fields such as computer vision,automatic object recognition,and automatic natural language processing.The implementation of a robust and efficient handwritten text recognition system remains a challenge for the research community in this field,especially for the Arabic language,which,compared to other languages,has a dearth of published works.In this work,we presented an efficient and new system for offline Arabic handwritten text recognition.Our new approach is based on the combination of a Convolutional Neural Network(CNN)and a Bidirectional Long-Term Memory(BLSTM)followed by a Connectionist Temporal Classification layer(CTC).Moreover,during the training phase of the model,we introduce an algorithm of data augmentation to increase the quality of data.Our proposed approach can recognize Arabic handwritten texts without the need to segment the characters,thus overcoming several problems related to this point.To train and test(evaluate)our approach,we used two Arabic handwritten text recognition databases,which are IFN/ENIT and KHATT.The Experimental results show that our new approach,compared to other methods in the literature,gives better results.展开更多
Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack...Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.展开更多
基金supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
文摘A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.
文摘Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network(PNN) where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rocktypes. Overall the error of mis-classification is below 6%. When compared with other three classification algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms.
基金supported by the National Natural Science Foundation of China(No.62134004).
文摘To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective cluster centers,a combination of density-based spatial clustering of applications with noise(DBSCAN)and Kmeans++is utilized.Subsequently,long short-term memory(LSTM)is employed to fit and yield optimized cluster centers with temporal information.Lastly,based on the new cluster centers and denoising ratio,a radius threshold is set,and noise points beyond this threshold are removed.The comprehensive denoising metrics F1_score of CBTDNN have achieved 0.8931,0.7735,and 0.9215 on the traffic sequences dataset,pedestrian detection dataset,and turntable dataset,respectively.And these metrics demonstrate improvements of 49.90%,33.07%,19.31%,and 22.97%compared to four contrastive algorithms,namely nearest neighbor(NNb),nearest neighbor with polarity(NNp),Autoencoder,and multilayer perceptron denoising filter(MLPF).These results demonstrate that the proposed method enhances the denoising performance of event-based sensors.
文摘Lip reading is typically regarded as visually interpreting the speaker’s lip movements during the speaking.This is a task of decoding the text from the speaker’s mouth movement.This paper proposes a lip-reading model that helps deaf people and persons with hearing problems to understand a speaker by capturing a video of the speaker and inputting it into the proposed model to obtain the corresponding subtitles.Using deep learning technologies makes it easier for users to extract a large number of different features,which can then be converted to probabilities of letters to obtain accurate results.Recently proposed methods for lip reading are based on sequence-to-sequence architectures that are designed for natural machine translation and audio speech recognition.However,in this paper,a deep convolutional neural network model called the hybrid lip-reading(HLR-Net)model is developed for lip reading from a video.The proposed model includes three stages,namely,preprocessing,encoder,and decoder stages,which produce the output subtitle.The inception,gradient,and bidirectional GRU layers are used to build the encoder,and the attention,fully-connected,activation function layers are used to build the decoder,which performs the connectionist temporal classification(CTC).In comparison with the three recent models,namely,the LipNet model,the lip-reading model with cascaded attention(LCANet),and attention-CTC(A-ACA)model,on the GRID corpus dataset,the proposed HLR-Net model can achieve significant improvements,achieving the CER of 4.9%,WER of 9.7%,and Bleu score of 92%in the case of unseen speakers,and the CER of 1.4%,WER of 3.3%,and Bleu score of 99%in the case of overlapped speakers.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.300102278402)。
文摘The lithofacies classification is essential for oil and gas reservoir exploration and development.The traditional method of lithofacies classification is based on"core calibration logging"and the experience of geologists.This approach has strong subjectivity,low efficiency,and high uncertainty.This uncertainty may be one of the key factors affecting the results of 3 D modeling of tight sandstone reservoirs.In recent years,deep learning,which is a cutting-edge artificial intelligence technology,has attracted attention from various fields.However,the study of deep-learning techniques in the field of lithofacies classification has not been sufficient.Therefore,this paper proposes a novel hybrid deep-learning model based on the efficient data feature-extraction ability of convolutional neural networks(CNN)and the excellent ability to describe time-dependent features of long short-term memory networks(LSTM)to conduct lithological facies-classification experiments.The results of a series of experiments show that the hybrid CNN-LSTM model had an average accuracy of 87.3%and the best classification effect compared to the CNN,LSTM or the three commonly used machine learning models(Support vector machine,random forest,and gradient boosting decision tree).In addition,the borderline synthetic minority oversampling technique(BSMOTE)is introduced to address the class-imbalance issue of raw data.The results show that processed data balance can significantly improve the accuracy of lithofacies classification.Beside that,based on the fine lithofacies constraints,the sequential indicator simulation method is used to establish a three-dimensional lithofacies model,which completes the fine description of the spatial distribution of tight sandstone reservoirs in the study area.According to this comprehensive analysis,the proposed CNN-LSTM model,which eliminates class imbalance,can be effectively applied to lithofacies classification,and is expected to improve the reality of the geological model for the tight sandstone reservoirs.
文摘Traditional protection methods are not suitable for hybrid(cable and overhead)transmission lines in voltage source converter based high-voltage direct current(VSC-HVDC)systems.Accordingly,this paper presents the robust fault detection,classification,and location based on the empirical wavelet transform-Teager energy operator(EWT-TEO)and artificial neural network(ANN)for hybrid transmission lines in VSC-HVDC systems.The operational scheme of the proposed protection method consists of two loops①an EWT-TEO based feature extraction loop,②and an ANN-based fault detection,classification,and location loop.Under the proposed protection method,the voltage and current signals are decomposed into several sub-passbands with low and high frequencies using the empirical wavelet transform(EWT)method.The energy content extracted by the EWT is fed into the ANN for fault detection,classification,and location.Various fault cases,including the high-impedance fault(HIF)as well as noises,are performed to train the ANN with two hidden layers.The test system and signal decomposition are conducted by PSCAD/EMTDC and MATLAB,respectively.The performance of the proposed protection method is compared with that of the traditional non-pilot traveling wave(TW)based protection method.The results confirm the high accuracy of the proposed protection method for hybrid transmission lines in VSC-HVDC systems,where a mean percentage error of approximately 0.1%is achieved.
文摘Modern leather industries are focused on producing high quality leather products for sustaining the market com-petitiveness. However, various leather defects are introduced during various stages of manufacturing process such as material handling, tanning and dyeing. Manual inspection of leather surfaces is subjective and inconsistent in nature;hence machine vision systems have been widely adopted for the automated inspection of leather defects. It is neces-sary develop suitable image processing algorithms for localize leather defects such as folding marks, growth marks, grain off, loose grain, and pinhole due to the ambiguous texture pattern and tiny nature in the localized regions of the leather. This paper presents deep learning neural network-based approach for automatic localization and classifica-tion of leather defects using a machine vision system. In this work, popular convolutional neural networks are trained using leather images of different leather defects and a class activation mapping technique is followed to locate the region of interest for the class of leather defect. Convolution neural networks such as Google net, Squeeze-net, RestNet are found to provide better accuracy of classification as compared with the state-of-the-art neural network architectures and the results are presented.
文摘In this paper,we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques.We first discuss models such as recurrent neural networks(RNNs) and convolutional neural networks(CNNs) that can effectively exploit variablelength contextual information,and their various combination with other models.We then describe models that are optimized end-to-end and emphasize on feature representations learned jointly with the rest of the system,the connectionist temporal classification(CTC) criterion,and the attention-based sequenceto-sequence translation model.We further illustrate robustness issues in speech recognition systems,and discuss acoustic model adaptation,speech enhancement and separation,and robust training strategies.We also cover modeling techniques that lead to more efficient decoding and discuss possible future directions in acoustic model research.
文摘This paper proposes an accurate,efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network(CNN).The state-of-the-art robust CNN model(EfficientNet)is applied to tunnel wall image recognition.Gaussian filtering,data augmentation and other data pre-processing techniques are used to improve the data quality and quantity.Combined with transfer learning,the generality,accuracy and efficiency of the deep learning(DL)model are further improved,and finally we achieve 89.96%accuracy.Compared with other state-of-the-art CNN architectures,such as ResNet and Inception-ResNet-V2(IRV2),the presented deep transfer learning model is more stable,accurate and efficient.To reveal the rock classification mechanism of the proposed model,Gradient-weight Class Activation Map(Grad-CAM)visualizations are integrated into the model to enable its explainability and accountability.The developed deep transfer learning model has been applied to support the tunneling of the Xingyi City Bypass in the high mountain area of Guizhou,China,with great results.
文摘In recent years,Deep Learning models have become indispensable in several fields such as computer vision,automatic object recognition,and automatic natural language processing.The implementation of a robust and efficient handwritten text recognition system remains a challenge for the research community in this field,especially for the Arabic language,which,compared to other languages,has a dearth of published works.In this work,we presented an efficient and new system for offline Arabic handwritten text recognition.Our new approach is based on the combination of a Convolutional Neural Network(CNN)and a Bidirectional Long-Term Memory(BLSTM)followed by a Connectionist Temporal Classification layer(CTC).Moreover,during the training phase of the model,we introduce an algorithm of data augmentation to increase the quality of data.Our proposed approach can recognize Arabic handwritten texts without the need to segment the characters,thus overcoming several problems related to this point.To train and test(evaluate)our approach,we used two Arabic handwritten text recognition databases,which are IFN/ENIT and KHATT.The Experimental results show that our new approach,compared to other methods in the literature,gives better results.
文摘Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.