期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Robust visual tracking using temporal regularization correlation filter with high-confidence strategy
1
作者 Xiao-Gang Dong Ke-Xuan Li +2 位作者 Hong-Xia Mao Chen Hu Tian Pu 《Journal of Electronic Science and Technology》 2025年第2期81-96,共16页
Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking ro... Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking robustness and precision.In this paper,a universally applicable method based on correlation filters is introduced to mitigate model drift in complex scenarios.It employs temporal-confidence samples as a priori to guide the model update process and ensure its precision and consistency over a long period.An improved update mechanism based on the peak side-lobe to peak correlation energy(PSPCE)criterion is proposed,which selects high-confidence samples along the temporal dimension to update temporal-confidence samples.Extensive experiments on various benchmarks demonstrate that the proposed method achieves a competitive performance compared with the state-of-the-art methods.Especially when the target appearance changes significantly,our method is more robust and can achieve a balance between precision and speed.Specifically,on the object tracking benchmark(OTB-100)dataset,compared to the baseline,the tracking precision of our model improves by 8.8%,8.8%,5.1%,5.6%,and 6.9%for background clutter,deformation,occlusion,rotation,and illumination variation,respectively.The results indicate that this proposed method can significantly enhance the robustness and precision of target tracking in dynamic and challenging environments,offering a reliable solution for applications such as real-time monitoring,autonomous driving,and precision guidance. 展开更多
关键词 Appearance changes Correlation filter High-confidence strategy temporal regularization Visual tracking
在线阅读 下载PDF
Single-trial EEG-based emotion recognition using temporally regularized common spatial pattern
2
作者 成敏敏 陆祖宏 王海贤 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期55-60,共6页
This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used a... This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used as experimental materials. Positive words versus neutral words and negative words versus neutral words are classified, respectively, using the induced EEG signals. The method of temporally regularized common spatial patterns (TRCSP) is chosen to extract features from the EEG trials, and then single-trial EEG classification is achieved by linear discriminant analysis. Classification accuracies are between 55% and 65%. The statistical significance of the classification accuracies is confirmed by permutation tests, which shows the successful identification of emotional words and neutral ones, and also the ability to identify emotional words. In addition, 10 out of 15 subjects obtain significant classification accuracy for negative words versus neutral words while only 4 are significant for positive words versus neutral words, which demonstrate that negative emotions are more easily identified. 展开更多
关键词 emotion recognition temporal regularization common spatial patterns(CSP) two-character Chinese words permutation test
在线阅读 下载PDF
Machine learning based online fault prognostics for nonstationary industrial process via degradation feature extraction and temporal smoothness analysis 被引量:2
3
作者 HU Yun-yun ZHAO Chun-hui KE Zhi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3838-3855,共18页
Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in gen... Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process. 展开更多
关键词 fault prognostic NONSTATIONARY industrial process fault degradation-oriented slow feature analysis(FDSFA) temporal smoothness regularization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部