Recurring Slope Lineae(RSL)are seasonally observed dark streaks on the Martian surface that exhibit distinct spatial and temporal distribution characteristics.Exploring their formation mechanisms can deepen our unders...Recurring Slope Lineae(RSL)are seasonally observed dark streaks on the Martian surface that exhibit distinct spatial and temporal distribution characteristics.Exploring their formation mechanisms can deepen our understanding of surface activity on Mars and provide scientific basis for future Mars exploration.This study aims to gain a comprehensive understanding of the spatial and temporal distribution characteristics and formation mechanisms of RSL by reviewing relevant literature and synthesizing various viewpoints and experimental results.RSL typically appear during warm seasons,disappear during cold seasons,and repeat over multiple Martian years.The formation mechanisms can be broadly categorized into three types:dry mode,wet mode,and mixed mode.However,a definitive explanation for the formation of RSL is still lacking,and both the dry and wet models have their respective limitations.It is likely that the formation of RSL is the result of the combined action of multiple mechanisms.The next step should be to search for terrestrial analogs of RSL and conduct research at high spatial and temporal resolutions to understand the forming processes of RSL.展开更多
An earthquake of Ms=7.4 occurred in Mani, Xizang (Tibet), China on November 8, 1997. The moment tensor ofthis earthquake was inverted using the long period body wave form data from China Digital Seismograph Network(CD...An earthquake of Ms=7.4 occurred in Mani, Xizang (Tibet), China on November 8, 1997. The moment tensor ofthis earthquake was inverted using the long period body wave form data from China Digital Seismograph Network(CDSN). The apparent source time functions (AS TFs) were retrieved from P and S waves, respectively, using thedeconvolution technique in frequency domain, and the tempo-spatial rupture process on the fault plane was imagedby inverting the azimuth dependent AS TFs from different stations. The result of the moment tensor inversionindicates that the P and T axes of earthquake-generating stress field were nearly horizontal, with the P axis in theNNE direction (29), the T axis in the SEE direction (122) and that the NEE-SWW striking nodal plane andNNW-SSE striking nodal plane are mainly left-lateral and right-lateral strike-slip, respectively; that this earthquakehad a scalar seismic moment of 3.4xl02o N. .m, and a moment magnitude of Mw=7.6. Taking the aftershock distribution into account, we proposed that the earthquake rupture occurred in the fault plane with the strike of 250,the dip of 88 and the rake of 19. On the basis of the result of the moment tensor inversion, the theoretical seismograms were synthesized, and then the AS T Fs were retrieved by deconvoving the synthetic seismograms fromthe observed seismograms. The A S T Fs retrieved from the P and S waves of different stations identically suggestedthat this earthquake was of a simple time history, whose ASTF can be approximated with a sine function with thehalf period of about 10 s. Inverting the azimuth dependent A S T Fs from P and S waveforms led to the imageshowing the tempo-spatial distribution of the rupture on the fault plane. From the 'remembering' snap-shots, therupture initiated at the western end of the fault, and then propagated eastward and downward, indicating an overallunilateral rupture. However, the slip distribution is non-uniform, being made up of three sub-areas, one in thewestern end, about 10 km deep ('western area'), another about 55 kin away from the western end and about 35 Iondeep ('eastern area'), the third about 30 km away from the western end and around 40 km deep ('central area').The total rupture area was around 70 km long and 60 km wide. From the 'forgetting' snap-shots, the rupturingappeared quite complex, with the slip occurring in different position at different time, and the earthquake being ofthe characteristics of 'healing pulse'. Another point we have to stress is that the locations in which the ruptureinitiated and terminated were not where the main rupture took place. Eventually, the static slip distribution wascalculated, and the largest slip values of the three sub-areas were 956 cm, 743 cm and 1 060 cm, for the western.eastern and central areas, respectively. From the slip distribution, the rupture mainly distributed in the fault about70 km eastern to the epicenter; from the aftershock distribution. however, the aftershocks were very sparse in thewest to the epicenter while densely clustered in the east to the epicenter It indicated that the Maul Ms=7.9 earthquake was resulted from the nearly eastward extension of the NEE-SWW to nearly E-W striking fault in thenorthwestern Tibetan plateau.展开更多
基金Supported by the National Natural Science Foundation(No.42272340).
文摘Recurring Slope Lineae(RSL)are seasonally observed dark streaks on the Martian surface that exhibit distinct spatial and temporal distribution characteristics.Exploring their formation mechanisms can deepen our understanding of surface activity on Mars and provide scientific basis for future Mars exploration.This study aims to gain a comprehensive understanding of the spatial and temporal distribution characteristics and formation mechanisms of RSL by reviewing relevant literature and synthesizing various viewpoints and experimental results.RSL typically appear during warm seasons,disappear during cold seasons,and repeat over multiple Martian years.The formation mechanisms can be broadly categorized into three types:dry mode,wet mode,and mixed mode.However,a definitive explanation for the formation of RSL is still lacking,and both the dry and wet models have their respective limitations.It is likely that the formation of RSL is the result of the combined action of multiple mechanisms.The next step should be to search for terrestrial analogs of RSL and conduct research at high spatial and temporal resolutions to understand the forming processes of RSL.
文摘An earthquake of Ms=7.4 occurred in Mani, Xizang (Tibet), China on November 8, 1997. The moment tensor ofthis earthquake was inverted using the long period body wave form data from China Digital Seismograph Network(CDSN). The apparent source time functions (AS TFs) were retrieved from P and S waves, respectively, using thedeconvolution technique in frequency domain, and the tempo-spatial rupture process on the fault plane was imagedby inverting the azimuth dependent AS TFs from different stations. The result of the moment tensor inversionindicates that the P and T axes of earthquake-generating stress field were nearly horizontal, with the P axis in theNNE direction (29), the T axis in the SEE direction (122) and that the NEE-SWW striking nodal plane andNNW-SSE striking nodal plane are mainly left-lateral and right-lateral strike-slip, respectively; that this earthquakehad a scalar seismic moment of 3.4xl02o N. .m, and a moment magnitude of Mw=7.6. Taking the aftershock distribution into account, we proposed that the earthquake rupture occurred in the fault plane with the strike of 250,the dip of 88 and the rake of 19. On the basis of the result of the moment tensor inversion, the theoretical seismograms were synthesized, and then the AS T Fs were retrieved by deconvoving the synthetic seismograms fromthe observed seismograms. The A S T Fs retrieved from the P and S waves of different stations identically suggestedthat this earthquake was of a simple time history, whose ASTF can be approximated with a sine function with thehalf period of about 10 s. Inverting the azimuth dependent A S T Fs from P and S waveforms led to the imageshowing the tempo-spatial distribution of the rupture on the fault plane. From the 'remembering' snap-shots, therupture initiated at the western end of the fault, and then propagated eastward and downward, indicating an overallunilateral rupture. However, the slip distribution is non-uniform, being made up of three sub-areas, one in thewestern end, about 10 km deep ('western area'), another about 55 kin away from the western end and about 35 Iondeep ('eastern area'), the third about 30 km away from the western end and around 40 km deep ('central area').The total rupture area was around 70 km long and 60 km wide. From the 'forgetting' snap-shots, the rupturingappeared quite complex, with the slip occurring in different position at different time, and the earthquake being ofthe characteristics of 'healing pulse'. Another point we have to stress is that the locations in which the ruptureinitiated and terminated were not where the main rupture took place. Eventually, the static slip distribution wascalculated, and the largest slip values of the three sub-areas were 956 cm, 743 cm and 1 060 cm, for the western.eastern and central areas, respectively. From the slip distribution, the rupture mainly distributed in the fault about70 km eastern to the epicenter; from the aftershock distribution. however, the aftershocks were very sparse in thewest to the epicenter while densely clustered in the east to the epicenter It indicated that the Maul Ms=7.9 earthquake was resulted from the nearly eastward extension of the NEE-SWW to nearly E-W striking fault in thenorthwestern Tibetan plateau.