An industrial experiment was conducted at a certain steel plant in China to compare and analyze the effects of Ca treatment and Mg–Ca treatment on inclusions in 45MnVS non-quenched and tempered steel. Through scannin...An industrial experiment was conducted at a certain steel plant in China to compare and analyze the effects of Ca treatment and Mg–Ca treatment on inclusions in 45MnVS non-quenched and tempered steel. Through scanning electron microscopy-energy dispersive scanning analysis of the morphology and composition of inclusions, as well as Aspex quantitative analysis of their quantity, type and size, the formation mechanism of MnS–oxide (MnS inclusions with oxide cores) was intensively studied. The influence of sulfide morphology on the impact properties of steel was also analyzed. The results show that the quantity percentage of spindle-shaped sulfides in Ca-treated steel is 19.99%, and that in Mg–Ca-treated steel is 35.38%. Compared with Ca-treated steel, there are more MnS–oxide inclusions in Mg–Ca-treated steel. Controlling the content of Ca and Mg in the oxide core of MnS–oxide inclusion above 10 wt.% and the area ratio below 5 would contribute to the formation of spindle-shaped inclusions after rolling. The mismatch between MnS and oxides decreases with the increase in MgO content in the oxides, which is beneficial to nucleation and precipitation of MnS with this type of oxides as the core. Under the same deformation conditions, the size of sulfide does not affect its aspect ratio. Under the experimental conditions, the inclusion containing a certain amount of MgO can enhance its sulfur capacity, facilitating the formation of composite sulfides. The transverse impact energy of Ca-treated steel is 25.785 J, and that of Mg–Ca-treated steel is 32.119 J. Compared with the traditional Ca-treatment, Mg–Ca treatment can increase the number of spindle-shaped sulfides in the steel, thereby improving the transverse impact toughness of the steel and reducing the anisotropy of the mechanical properties of the material.展开更多
An overview of the current research status and control methods of MnS in non-quenched and tempered steel was provided.As a low-melting plastic inclusion,the morphology and distribution of MnS were influenced by variou...An overview of the current research status and control methods of MnS in non-quenched and tempered steel was provided.As a low-melting plastic inclusion,the morphology and distribution of MnS were influenced by various production processes.Therefore,control of MnS is a systematic problem that must be integrated into the entire production process.Based on the production process,the factors affecting the morphology and distribution of MnS in steel were introduced.The effects of oxygen activity,manganese,sulfur,and some alloys on MnS inclusion precipitation were summarized,mainly including MnS modification treatment and oxygen-sulfide composite precipitation control.It is believed that MnS precipitates during the solidification process of steel,and controlling the solidification cooling rate could effectively regulate the size and morphology of MnS,avoiding the precipitation of II-MnS.Additionally,by changing the deformation rate,deformation amount,deformation temperature during the hot deformation process,and heating time and temperature during heat treatment,the distribution and morphology of MnS could be improved.Through the fine control of the above process parameters,the number of II-MnS in steel could be effectively reduced,and their morphology could be improved,thereby enhancing the performance of non-quenched and tempered steel and promoting its wider application.Furthermore,applying laboratory research results to industrial production is an important direction for future research efforts in this field.展开更多
To clarify the deformation behavior of MnS inclusions in a non-quenched and tempered steel at three different positions (edge, 1/2 radius and center) in the cross-section of the billet in the course of hot rolling, is...To clarify the deformation behavior of MnS inclusions in a non-quenched and tempered steel at three different positions (edge, 1/2 radius and center) in the cross-section of the billet in the course of hot rolling, isothermal compression experiments were performed under the deformation temperature range from 1073 to 1473 K, the reduction rates from 25% to 75% and the strain rates from 0.01 to 10 s^(−1). The variations of deformability features (i.e., aspect ratios, size distributions, and morphologies) of MnS inclusions with those isothermal compression parameters were revealed. The evaluation of the probable maximum aspect ratio of MnS inclusions at the three different positions in the cross-section of the billet after hot rolling was examined using the statistical analysis of extreme values. Results showed that the number densities of MnS inclusions at three different positions (edge, 1/2 radius and center) in the cross-section of the steel billet only fluctuated slightly when the deformation parameters varied in the isothermal compression, while the average inclusion aspect ratios in all cases generally have a negative correlation with the deformation temperature and positive correlations with the reduction ratio and the strain rate. Statistical analysis reveals that larger inclusions deform more easily during hot rolling. The effect of rolling temperature on the extreme value of the aspect ratio of inclusions is the smallest, while the effects of initial size, reduction ratio and strain rate are more significant.展开更多
The distinctive distribution of acoustic emission(AE)characteristic parameters generated during tensile testing of low-temperature tempered AISI 4140 steel was investigated.Two clusters of acoustic emission signals we...The distinctive distribution of acoustic emission(AE)characteristic parameters generated during tensile testing of low-temperature tempered AISI 4140 steel was investigated.Two clusters of acoustic emission signals were distinguished using power-law distribution fitting and k-means clustering methods.These clusters were identified as resulting from dislocation motion during yielding and dislocation entanglement during uniform plastic deformation.The conclusion is further confirmed by transmission electron microscopy images at different strains.In particular,the unique"arch-shaped"distribution of the acoustic emission energy during yielding implies a change in unusual dislocation motion modes.The effect of carbide precipitation was qualitatively discussed as not considering the primary cause of the formation of this arch-shaped distribution.The evolution of dislocation motion modes during yielding of low-temperature tempered martensite was elucidated by comparing the significant difference in cumulative energy values during yielding of annealed and low-temperature tempered specimens.Dislocations emit from Frank–Read or grain boundary sources and slip along short free paths,contributing to the initial increase in AE signals energy.Subsequently,the primary source of acoustic emission energy“arch-shaped”peak during yielding was generated by the avalanche behavior of accumulated dislocations,leading to the accelerated dislocation motion.展开更多
We derive methods for risk-neutral pricing of multi-asset options,when log-returns jointly follow a multivariate tempered stable distribution.These lead to processes that are more realistic than the better known Brown...We derive methods for risk-neutral pricing of multi-asset options,when log-returns jointly follow a multivariate tempered stable distribution.These lead to processes that are more realistic than the better known Brownian motion and stable processes.Further,we introduce the diagonal tempered stable model,which is parsimonious but allows for rich dependence between assets.Here,the number of parameters only grows linearly as the dimension increases,which makes it tractable in higher dimensions and avoids the so-called“curse of dimensionality.”As an illustration,we apply the model to price multi-asset options in two,three,and four dimensions.Detailed goodness-of-fit methods show that our model fits the data very well.展开更多
1.Introduction Quenched Fe-C martensite is very strong but brittle due to su-persaturated carbon atoms located at octahedron sites[1].In order to improve the ductility,tempering is necessary.With increasing tempering ...1.Introduction Quenched Fe-C martensite is very strong but brittle due to su-persaturated carbon atoms located at octahedron sites[1].In order to improve the ductility,tempering is necessary.With increasing tempering temperature,the saturated carbon can be sequentially arranged as clusters,segregation into defects like dislocations and interfaces,transition carbides,and cementite[2].As a result,the strength is reduced and the ductility is improved predominantly due to the decreased amount of solid solution carbon[3].展开更多
By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov te...By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov tempered difference operator to approximate the Riemann–Liouville tempered fractional partial derivative,the fractional central difference operator to discritize the space Riesz fractional partial derivative,and the classical central difference formula to discretize the advection term,a numerical algorithm is constructed for solving the Caputo tempered fractional advection-diffusion equation.The stability and the convergence analysis of the numerical method are given.Numerical experiments show that the numerical method is effective.展开更多
Based on thermodynamics calculation, the results of the formation temperature of MnS inclusions of non-quenched and tempered steel during heating process were dis- cussed. It is shown that while the solid fraction is ...Based on thermodynamics calculation, the results of the formation temperature of MnS inclusions of non-quenched and tempered steel during heating process were dis- cussed. It is shown that while the solid fraction is 0.9, MnS inclusions began to precipitate in the final stage of solidification. The solidification process of 49MnVS3 non-quenched and tempered steel during heating has been observed in situ using a confocal scanning laser microscope (CSLM), which agrees well with the thermody- namics calculation. MnS particles were coarsening during heating process, which would reduce the pinning effect on the austenite grain boundaries and bring about the ~11rtden ~r^wth ~f ,qnrn~ ~11,qtenif.~ ~r^ins in thi~ st~.g~.展开更多
The armour grade quenched and tempered steel joints fabricated using low hydrogen ferritic steel (LHF) filler exhibited superior joint efficiency owing to preferential ferrite microstructure in the welds and also th...The armour grade quenched and tempered steel joints fabricated using low hydrogen ferritic steel (LHF) filler exhibited superior joint efficiency owing to preferential ferrite microstructure in the welds and also they offered required resistance to HIC. However, the combat vehicles used in military operations will be required to operate under a wide range of road conditions ranging from first class to cross country. Structural components in combat vehicles are subjected to dynamic loading with high strain rates during operation. Stress loadings within the vehicle hull of these vehicles are expected to fluctuate considerably and structural cracking especially in welds during the service life of these vehicles can lead to catastrophic failures. Under these conditions, fracture behaviour of high strain rate sensitive structural steels can be better understood by dynamic fracture toughness (K1d). Hence, an attempt was made to study dynamic fracture toughness of the armour grade quenched and tempered steel and their welds fabricated using LHF consumables. The experimental results indicate that the K1d values of the joints fabricated by shielded metal arc welding (SMAW) are higher than those of the joints fabricated using flux cored arc welding (FCAW) process.展开更多
Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively i...Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively integrate grinding and surface hardening. Experimental studies were carried out on grinding hardening of non-quenched and tempered steel. Through grinding experiments with variable depths of cut and feeding rate,the variation in the depth of the hardening layer was studied and the microstructure of the hardening zone of the test pieces was subsequently ana-lyzed. In the end,the hardening effect of non-quenched and tempered steel was compared with that of 40Cr steel,which revealed the superiority of non-quenched and tempered steel in grinding hardening technology.展开更多
Elongated MnS inclusions in rolled non-quenched and tempered steel tend to cause the mechanical anisotropy of steel,deteriorate the mechanical properties and degrade the quality and service life of the steel products....Elongated MnS inclusions in rolled non-quenched and tempered steel tend to cause the mechanical anisotropy of steel,deteriorate the mechanical properties and degrade the quality and service life of the steel products.To reveal the mechanisms of morphological transformation of strip-shaped MnS inclusions during isothermal heating,the effects of heat treatment time and temperature on the morphology,number density and size distribution of elongated MnS inclusions were systematically studied and discussed.A diffusion couple experiment was also conducted to clarify the diffusion mode of MnS inclusions.The experimental results showed that with the increase in isothermal heating time(from 0 to 10 h at 1473 K)and temperature(from 1173 to 1573 K for 3.0 h),the number density and average aspect ratio of MnS inclusions generally showed an increase and decrease trend,respectively,while the area fraction remained stable and only slightly fluctuated around 0.4%.In the diffusion couple,after the isothermal heating at 1473 K for 3.0 h,the elements Mn and S in the steel near the steel-MnS interface were very stable without any concentration gradient.The morphology change sequence of the elongated MnS inclusions in the rolled non-quenched and tempered steel during the isothermal heating was strip→cylinderization→spindle→spheroidization.Relationship between the diameter of MnS inclusion and the spacing between two MnS inclusions after splitting,and the fitting goodness of different n values under different experimental time and temperature confirmed that the driving force for the transformation of MnS inclusions during the isothermal heating was surface diffusion,instead of volume diffusion.展开更多
The variations of microstructures and mechanical properties of steels 15CrMnMoV, 18Mn2CrMoB,18Cr2Ni4W,30CrMnSi,30CrMnSiNi2 and 40CrMnSiMoV,which were tempered at different temperatures after austempering and continuou...The variations of microstructures and mechanical properties of steels 15CrMnMoV, 18Mn2CrMoB,18Cr2Ni4W,30CrMnSi,30CrMnSiNi2 and 40CrMnSiMoV,which were tempered at different temperatures after austempering and continuous cooling at given rates, have been investigated.Based on the experimental results,the behaviour and mechanism of tempered bainite embrittlement(TBE)have been discussed.Finally,the theoretical and prac- tical basis for selecting the optimum tempering temperature of steels with bainite structure af- ter heat treatment are proposed.展开更多
Based on optical microscope(OM),transmission electron microscope(TEM) and mechanical performance measurement,the microstructures and mechanical properties of Nb-V micro-alloying non-quenched and tempered steels have b...Based on optical microscope(OM),transmission electron microscope(TEM) and mechanical performance measurement,the microstructures and mechanical properties of Nb-V micro-alloying non-quenched and tempered steels have been studied.The results showed that the microstructure consists of ferrite and pearlite,in which there exists a lot of intragranular ferrite.Niobium carbide is the main form of carbonitrides,Nb-enriched carbonitrides refine grains,V-enriched carbonitrides have precipitation strengthening effect,which promotes the toughness of the studied steel.The mechanical properties for steels 1,2 and 3 have met the standards required by high load automobile crankshaft,in which the comprehensive property for No.2 is the best.展开更多
High-strength quenched and tempered (HSQT) steels have been widely used in structural applications where light weight is of primary design interest.Gas metal arc welding is a common way to join QT steels.When GMAW is ...High-strength quenched and tempered (HSQT) steels have been widely used in structural applications where light weight is of primary design interest.Gas metal arc welding is a common way to join QT steels.When GMAW is used to join the HSQT steel,multi-pass is usually required to achieve full penetration.In addition,weld crack is often observed because of HSQT steel's high susceptibility to hydrogen embrittlement.In addition,due to the large amount of heat input from the arc,the heat affected zone is often softened.This reduces the ductility and strength of welds and makes the weld weaker than the base metal.In this study,a hybrid laser/GMAW process is proposed to produce butt joint for 6.5mm thick HSQT A514 steel plate.Hydrogen diffusion mechanism is first discusses for GMAW and hybrid laser-GMAW welding processes.Metal transfer mode during the hybrid laser/GMAW welding process is also analyzed.A high speed CCD camera with 4000 frame/second is used to monitor the welding process in real time.Welds obtained by GMAW and hybrid laser/GMAW techniques are compared and tested by static lap shear and dynamic impact.Effects of gap between two metal plates and laser beam/GMAW torch spacing on weld property are studied.By appropriately choosing these two parameters,crack-free butt joints with full penetration can be successfully obtained by the hybrid laser/GMAW welding process for HSQT A514 steel plate.展开更多
The cooling rate of casting has a significant effect on microstructure and mechanical properties of castings.The 9Cr-1.5Mo-1Co cast steel,referred to as CB2,is one of the most promising alloys for various cast compone...The cooling rate of casting has a significant effect on microstructure and mechanical properties of castings.The 9Cr-1.5Mo-1Co cast steel,referred to as CB2,is one of the most promising alloys for various cast components to be used under ultrasupercritical conditions.In this study,HRTEM,SEM,and XRD methods were used for qualitative and quantitative analyses of contents,phases,and sizes of the inclusions and precipitates,as well as microstructure observation of the tempered martensitic steel at different cooling rates.Traditional tensile tests were conducted to characterize the material mechanical properties.Results show that the size of the boron nitride and precipitate,the width of the martensite lath and the content of theδ-ferrite are reduced as the cooling rate increases from 5-8℃·min^-1(CB2-S steel)to 50-60℃·min^-1(CB2-F steel).The precipitates are mainly composed of M23C6 and a small amount of M3C.The average diameters of the M23C6 precipitates in CB2-F and CB2-S are 202 nm and 209 nm,respectively.The inclusions are mainly composed of BN,Al2O3 and MnO2,and the inclusion ratios are 0.1969%for the CB2-F and 0.06556%for CB2-S steel.The average martensite lath widths of CB2-F and CB2-S steels are 289 nm and 301 nm,respectively.Furthermore,the M3C having a diameter of about 150 nm and a thickness of 20 nm is observed in theδ-ferrite of the tempered CB2-S steel.The presence of theδ-ferrite reduces the precipitation strengthening and dislocation density in CB2-S steel.In addition,the lower cooling rate stabilizes theδ-ferrite structure at room temperature.展开更多
The mechanical properties of SiMnCr and SiMnMo steels tempered in lowtemperature range were studied. The results show that there is no notable effect of RE on material strength during lowtemperature tempering. There a...The mechanical properties of SiMnCr and SiMnMo steels tempered in lowtemperature range were studied. The results show that there is no notable effect of RE on material strength during lowtemperature tempering. There are toughness troughs of tempered martensite embrittlement(TME) at 350 ℃ and 400 ℃ for steel SiMnCr and SiMnMo respectively. RE raises the toughness of TME troughs to some extent by refining grains and restraining embrittlment of austenite grain boundary, although it does not change TME temperature.展开更多
Rotating arc borizontal narrow gap welding of quenched & tempered (Q&T) steel was innovatively performed for solving the bottleneck that the molten pool sagged due to the gravity. The shapely multilayer single pas...Rotating arc borizontal narrow gap welding of quenched & tempered (Q&T) steel was innovatively performed for solving the bottleneck that the molten pool sagged due to the gravity. The shapely multilayer single pass horizontal joint could be obtairzed by using the rotating are welding process. The cold crack was not observed in the joint without controlling the heat input and selecting the consumables intentionally. Microstructure of the joint could be divided into three zones: base metal zone (BMZ) , heat-affected zone ( HAZ) and weld zone (WZ). Because of the characteristic of the rotating arc horizontal welding process, the defects in the joints were slag inclztsion formed at the interlayer of lower side wall. Tbe tensile strength and hardness of HAZ and WZ were larger than those of BMZ. The impact toughness in WZ, HAZ and BM at 0 % is equal to 11.5, 212 and 236 J, respectively.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52074186 and 51704200)Jiangsu province Natural Science Fund(No.BK20150336)Project sponsored by the State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology)(No.G202304).
文摘An industrial experiment was conducted at a certain steel plant in China to compare and analyze the effects of Ca treatment and Mg–Ca treatment on inclusions in 45MnVS non-quenched and tempered steel. Through scanning electron microscopy-energy dispersive scanning analysis of the morphology and composition of inclusions, as well as Aspex quantitative analysis of their quantity, type and size, the formation mechanism of MnS–oxide (MnS inclusions with oxide cores) was intensively studied. The influence of sulfide morphology on the impact properties of steel was also analyzed. The results show that the quantity percentage of spindle-shaped sulfides in Ca-treated steel is 19.99%, and that in Mg–Ca-treated steel is 35.38%. Compared with Ca-treated steel, there are more MnS–oxide inclusions in Mg–Ca-treated steel. Controlling the content of Ca and Mg in the oxide core of MnS–oxide inclusion above 10 wt.% and the area ratio below 5 would contribute to the formation of spindle-shaped inclusions after rolling. The mismatch between MnS and oxides decreases with the increase in MgO content in the oxides, which is beneficial to nucleation and precipitation of MnS with this type of oxides as the core. Under the same deformation conditions, the size of sulfide does not affect its aspect ratio. Under the experimental conditions, the inclusion containing a certain amount of MgO can enhance its sulfur capacity, facilitating the formation of composite sulfides. The transverse impact energy of Ca-treated steel is 25.785 J, and that of Mg–Ca-treated steel is 32.119 J. Compared with the traditional Ca-treatment, Mg–Ca treatment can increase the number of spindle-shaped sulfides in the steel, thereby improving the transverse impact toughness of the steel and reducing the anisotropy of the mechanical properties of the material.
基金support from the Project funded by China Postdoctoral Science Foundation(2022M720982).
文摘An overview of the current research status and control methods of MnS in non-quenched and tempered steel was provided.As a low-melting plastic inclusion,the morphology and distribution of MnS were influenced by various production processes.Therefore,control of MnS is a systematic problem that must be integrated into the entire production process.Based on the production process,the factors affecting the morphology and distribution of MnS in steel were introduced.The effects of oxygen activity,manganese,sulfur,and some alloys on MnS inclusion precipitation were summarized,mainly including MnS modification treatment and oxygen-sulfide composite precipitation control.It is believed that MnS precipitates during the solidification process of steel,and controlling the solidification cooling rate could effectively regulate the size and morphology of MnS,avoiding the precipitation of II-MnS.Additionally,by changing the deformation rate,deformation amount,deformation temperature during the hot deformation process,and heating time and temperature during heat treatment,the distribution and morphology of MnS could be improved.Through the fine control of the above process parameters,the number of II-MnS in steel could be effectively reduced,and their morphology could be improved,thereby enhancing the performance of non-quenched and tempered steel and promoting its wider application.Furthermore,applying laboratory research results to industrial production is an important direction for future research efforts in this field.
基金supported by the National Natural Science Foundation of China(Grant Nos.52074198,52374342 and U21A20113)also supported by the Department of Science and Technology of Hubei Province(Grant No.2023AFB603 and No.2023DJC140).
文摘To clarify the deformation behavior of MnS inclusions in a non-quenched and tempered steel at three different positions (edge, 1/2 radius and center) in the cross-section of the billet in the course of hot rolling, isothermal compression experiments were performed under the deformation temperature range from 1073 to 1473 K, the reduction rates from 25% to 75% and the strain rates from 0.01 to 10 s^(−1). The variations of deformability features (i.e., aspect ratios, size distributions, and morphologies) of MnS inclusions with those isothermal compression parameters were revealed. The evaluation of the probable maximum aspect ratio of MnS inclusions at the three different positions in the cross-section of the billet after hot rolling was examined using the statistical analysis of extreme values. Results showed that the number densities of MnS inclusions at three different positions (edge, 1/2 radius and center) in the cross-section of the steel billet only fluctuated slightly when the deformation parameters varied in the isothermal compression, while the average inclusion aspect ratios in all cases generally have a negative correlation with the deformation temperature and positive correlations with the reduction ratio and the strain rate. Statistical analysis reveals that larger inclusions deform more easily during hot rolling. The effect of rolling temperature on the extreme value of the aspect ratio of inclusions is the smallest, while the effects of initial size, reduction ratio and strain rate are more significant.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(Grant Nos.51771114,51371117).
文摘The distinctive distribution of acoustic emission(AE)characteristic parameters generated during tensile testing of low-temperature tempered AISI 4140 steel was investigated.Two clusters of acoustic emission signals were distinguished using power-law distribution fitting and k-means clustering methods.These clusters were identified as resulting from dislocation motion during yielding and dislocation entanglement during uniform plastic deformation.The conclusion is further confirmed by transmission electron microscopy images at different strains.In particular,the unique"arch-shaped"distribution of the acoustic emission energy during yielding implies a change in unusual dislocation motion modes.The effect of carbide precipitation was qualitatively discussed as not considering the primary cause of the formation of this arch-shaped distribution.The evolution of dislocation motion modes during yielding of low-temperature tempered martensite was elucidated by comparing the significant difference in cumulative energy values during yielding of annealed and low-temperature tempered specimens.Dislocations emit from Frank–Read or grain boundary sources and slip along short free paths,contributing to the initial increase in AE signals energy.Subsequently,the primary source of acoustic emission energy“arch-shaped”peak during yielding was generated by the avalanche behavior of accumulated dislocations,leading to the accelerated dislocation motion.
文摘We derive methods for risk-neutral pricing of multi-asset options,when log-returns jointly follow a multivariate tempered stable distribution.These lead to processes that are more realistic than the better known Brownian motion and stable processes.Further,we introduce the diagonal tempered stable model,which is parsimonious but allows for rich dependence between assets.Here,the number of parameters only grows linearly as the dimension increases,which makes it tractable in higher dimensions and avoids the so-called“curse of dimensionality.”As an illustration,we apply the model to price multi-asset options in two,three,and four dimensions.Detailed goodness-of-fit methods show that our model fits the data very well.
基金National Natural Science Foundation of China(Nos.52271004 and 51901021).
文摘1.Introduction Quenched Fe-C martensite is very strong but brittle due to su-persaturated carbon atoms located at octahedron sites[1].In order to improve the ductility,tempering is necessary.With increasing tempering temperature,the saturated carbon can be sequentially arranged as clusters,segregation into defects like dislocations and interfaces,transition carbides,and cementite[2].As a result,the strength is reduced and the ductility is improved predominantly due to the decreased amount of solid solution carbon[3].
文摘By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov tempered difference operator to approximate the Riemann–Liouville tempered fractional partial derivative,the fractional central difference operator to discritize the space Riesz fractional partial derivative,and the classical central difference formula to discretize the advection term,a numerical algorithm is constructed for solving the Caputo tempered fractional advection-diffusion equation.The stability and the convergence analysis of the numerical method are given.Numerical experiments show that the numerical method is effective.
基金supported by the National Natural Science Foundation of China(No.51074022)
文摘Based on thermodynamics calculation, the results of the formation temperature of MnS inclusions of non-quenched and tempered steel during heating process were dis- cussed. It is shown that while the solid fraction is 0.9, MnS inclusions began to precipitate in the final stage of solidification. The solidification process of 49MnVS3 non-quenched and tempered steel during heating has been observed in situ using a confocal scanning laser microscope (CSLM), which agrees well with the thermody- namics calculation. MnS particles were coarsening during heating process, which would reduce the pinning effect on the austenite grain boundaries and bring about the ~11rtden ~r^wth ~f ,qnrn~ ~11,qtenif.~ ~r^ins in thi~ st~.g~.
基金Armament Research Board (ARMREB),New Delhi for funding this project work (Project No MAA/03/41)
文摘The armour grade quenched and tempered steel joints fabricated using low hydrogen ferritic steel (LHF) filler exhibited superior joint efficiency owing to preferential ferrite microstructure in the welds and also they offered required resistance to HIC. However, the combat vehicles used in military operations will be required to operate under a wide range of road conditions ranging from first class to cross country. Structural components in combat vehicles are subjected to dynamic loading with high strain rates during operation. Stress loadings within the vehicle hull of these vehicles are expected to fluctuate considerably and structural cracking especially in welds during the service life of these vehicles can lead to catastrophic failures. Under these conditions, fracture behaviour of high strain rate sensitive structural steels can be better understood by dynamic fracture toughness (K1d). Hence, an attempt was made to study dynamic fracture toughness of the armour grade quenched and tempered steel and their welds fabricated using LHF consumables. The experimental results indicate that the K1d values of the joints fabricated by shielded metal arc welding (SMAW) are higher than those of the joints fabricated using flux cored arc welding (FCAW) process.
基金Projects JH03-001 supported by the High and New Technology Foundation of Jiangsu High School2006B009 by the Science Foundation of China University ofMining & Technology
文摘Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively integrate grinding and surface hardening. Experimental studies were carried out on grinding hardening of non-quenched and tempered steel. Through grinding experiments with variable depths of cut and feeding rate,the variation in the depth of the hardening layer was studied and the microstructure of the hardening zone of the test pieces was subsequently ana-lyzed. In the end,the hardening effect of non-quenched and tempered steel was compared with that of 40Cr steel,which revealed the superiority of non-quenched and tempered steel in grinding hardening technology.
基金The current study was supported by the National Natural Science Foundation of China(Grant No.52074198).
文摘Elongated MnS inclusions in rolled non-quenched and tempered steel tend to cause the mechanical anisotropy of steel,deteriorate the mechanical properties and degrade the quality and service life of the steel products.To reveal the mechanisms of morphological transformation of strip-shaped MnS inclusions during isothermal heating,the effects of heat treatment time and temperature on the morphology,number density and size distribution of elongated MnS inclusions were systematically studied and discussed.A diffusion couple experiment was also conducted to clarify the diffusion mode of MnS inclusions.The experimental results showed that with the increase in isothermal heating time(from 0 to 10 h at 1473 K)and temperature(from 1173 to 1573 K for 3.0 h),the number density and average aspect ratio of MnS inclusions generally showed an increase and decrease trend,respectively,while the area fraction remained stable and only slightly fluctuated around 0.4%.In the diffusion couple,after the isothermal heating at 1473 K for 3.0 h,the elements Mn and S in the steel near the steel-MnS interface were very stable without any concentration gradient.The morphology change sequence of the elongated MnS inclusions in the rolled non-quenched and tempered steel during the isothermal heating was strip→cylinderization→spindle→spheroidization.Relationship between the diameter of MnS inclusion and the spacing between two MnS inclusions after splitting,and the fitting goodness of different n values under different experimental time and temperature confirmed that the driving force for the transformation of MnS inclusions during the isothermal heating was surface diffusion,instead of volume diffusion.
文摘The variations of microstructures and mechanical properties of steels 15CrMnMoV, 18Mn2CrMoB,18Cr2Ni4W,30CrMnSi,30CrMnSiNi2 and 40CrMnSiMoV,which were tempered at different temperatures after austempering and continuous cooling at given rates, have been investigated.Based on the experimental results,the behaviour and mechanism of tempered bainite embrittlement(TBE)have been discussed.Finally,the theoretical and prac- tical basis for selecting the optimum tempering temperature of steels with bainite structure af- ter heat treatment are proposed.
文摘Based on optical microscope(OM),transmission electron microscope(TEM) and mechanical performance measurement,the microstructures and mechanical properties of Nb-V micro-alloying non-quenched and tempered steels have been studied.The results showed that the microstructure consists of ferrite and pearlite,in which there exists a lot of intragranular ferrite.Niobium carbide is the main form of carbonitrides,Nb-enriched carbonitrides refine grains,V-enriched carbonitrides have precipitation strengthening effect,which promotes the toughness of the studied steel.The mechanical properties for steels 1,2 and 3 have met the standards required by high load automobile crankshaft,in which the comprehensive property for No.2 is the best.
基金Foundation item:National Science Foundation of United States
文摘High-strength quenched and tempered (HSQT) steels have been widely used in structural applications where light weight is of primary design interest.Gas metal arc welding is a common way to join QT steels.When GMAW is used to join the HSQT steel,multi-pass is usually required to achieve full penetration.In addition,weld crack is often observed because of HSQT steel's high susceptibility to hydrogen embrittlement.In addition,due to the large amount of heat input from the arc,the heat affected zone is often softened.This reduces the ductility and strength of welds and makes the weld weaker than the base metal.In this study,a hybrid laser/GMAW process is proposed to produce butt joint for 6.5mm thick HSQT A514 steel plate.Hydrogen diffusion mechanism is first discusses for GMAW and hybrid laser-GMAW welding processes.Metal transfer mode during the hybrid laser/GMAW welding process is also analyzed.A high speed CCD camera with 4000 frame/second is used to monitor the welding process in real time.Welds obtained by GMAW and hybrid laser/GMAW techniques are compared and tested by static lap shear and dynamic impact.Effects of gap between two metal plates and laser beam/GMAW torch spacing on weld property are studied.By appropriately choosing these two parameters,crack-free butt joints with full penetration can be successfully obtained by the hybrid laser/GMAW welding process for HSQT A514 steel plate.
文摘The cooling rate of casting has a significant effect on microstructure and mechanical properties of castings.The 9Cr-1.5Mo-1Co cast steel,referred to as CB2,is one of the most promising alloys for various cast components to be used under ultrasupercritical conditions.In this study,HRTEM,SEM,and XRD methods were used for qualitative and quantitative analyses of contents,phases,and sizes of the inclusions and precipitates,as well as microstructure observation of the tempered martensitic steel at different cooling rates.Traditional tensile tests were conducted to characterize the material mechanical properties.Results show that the size of the boron nitride and precipitate,the width of the martensite lath and the content of theδ-ferrite are reduced as the cooling rate increases from 5-8℃·min^-1(CB2-S steel)to 50-60℃·min^-1(CB2-F steel).The precipitates are mainly composed of M23C6 and a small amount of M3C.The average diameters of the M23C6 precipitates in CB2-F and CB2-S are 202 nm and 209 nm,respectively.The inclusions are mainly composed of BN,Al2O3 and MnO2,and the inclusion ratios are 0.1969%for the CB2-F and 0.06556%for CB2-S steel.The average martensite lath widths of CB2-F and CB2-S steels are 289 nm and 301 nm,respectively.Furthermore,the M3C having a diameter of about 150 nm and a thickness of 20 nm is observed in theδ-ferrite of the tempered CB2-S steel.The presence of theδ-ferrite reduces the precipitation strengthening and dislocation density in CB2-S steel.In addition,the lower cooling rate stabilizes theδ-ferrite structure at room temperature.
文摘The mechanical properties of SiMnCr and SiMnMo steels tempered in lowtemperature range were studied. The results show that there is no notable effect of RE on material strength during lowtemperature tempering. There are toughness troughs of tempered martensite embrittlement(TME) at 350 ℃ and 400 ℃ for steel SiMnCr and SiMnMo respectively. RE raises the toughness of TME troughs to some extent by refining grains and restraining embrittlment of austenite grain boundary, although it does not change TME temperature.
基金Supported by National Natural Science Foundation of China (Grant No. 51005141 ).
文摘Rotating arc borizontal narrow gap welding of quenched & tempered (Q&T) steel was innovatively performed for solving the bottleneck that the molten pool sagged due to the gravity. The shapely multilayer single pass horizontal joint could be obtairzed by using the rotating are welding process. The cold crack was not observed in the joint without controlling the heat input and selecting the consumables intentionally. Microstructure of the joint could be divided into three zones: base metal zone (BMZ) , heat-affected zone ( HAZ) and weld zone (WZ). Because of the characteristic of the rotating arc horizontal welding process, the defects in the joints were slag inclztsion formed at the interlayer of lower side wall. Tbe tensile strength and hardness of HAZ and WZ were larger than those of BMZ. The impact toughness in WZ, HAZ and BM at 0 % is equal to 11.5, 212 and 236 J, respectively.