期刊文献+
共找到107,502篇文章
< 1 2 250 >
每页显示 20 50 100
KINETICS OF IRON-BASED CATALYST IN TEMPERATURE-PROGRAMMED REDUCTION
1
作者 梁斌 张鎏 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1996年第3期42-50,共9页
In this work, Temperature-Programmed Reduction Processes of iron oxide and 12 other kinds of promoted iron oxides were investigated. It is suggested that the reduction activation energy can be expressed as a normal di... In this work, Temperature-Programmed Reduction Processes of iron oxide and 12 other kinds of promoted iron oxides were investigated. It is suggested that the reduction activation energy can be expressed as a normal distribution. The distribution parameters were obtained by kinetic data fitting, which depends on the chemical and geometric characteristics of both the iron oxide and the promoter. 展开更多
关键词 temperature-programmed reduction IRON-BASED CATALYST reduction KINETICS
在线阅读 下载PDF
Smart Global Poverty Reduction Cooperation
2
作者 LU JIAJUN 《China Today》 2026年第1期39-41,共3页
Experts and officials shared their insights on poverty reduction cooperation and sustainable development during the 2025 International Seminar on Global Poverty Reduction Partnerships.
关键词 sustainable development international seminar OFFICIALS global poverty reduction cooperation experts poverty reduction
在线阅读 下载PDF
Fe-loaded S,N co-doped carbon catalyst for oxygen reduction reaction with enhanced electrocatalytic activity and durability
3
作者 Shengzhi He Chunwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期315-321,共7页
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-... Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications. 展开更多
关键词 zinc-air batteries oxygen reduction reaction iron-loaded nitrogen-doped carbon sulfur-doping
在线阅读 下载PDF
Optimizing the RuCo Ratio for More Efficient and Durable Oxygen Reduction in Acidic Media
4
作者 WEI Mingrui ZHANG Shuai +1 位作者 HUANG Shuo WANG Chao 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期25-32,共8页
The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a serie... The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs. 展开更多
关键词 ELECTROCATALYSIS oxygen reduction DURABILITY RuCo/C fuel cell
原文传递
Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO_(2) Reduction Reaction
5
作者 Jianglong Liu Yunpeng Liu +5 位作者 Shunzheng Zhao Baotong Chen Guang Mo Zhongjun Chen Yuechang Wei Zhonghua Wu 《Nano-Micro Letters》 2026年第1期647-697,共51页
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr... Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application. 展开更多
关键词 Bismuth-based catalysts CO_(2)reduction reaction Regulation strategy Catalytic mechanism REVIEW
在线阅读 下载PDF
A study on the reduction behayior of Fe_2(MoO_4)_3 with a combined in-situ temperature-programmed reduction- Mossbauer spectroscopic technique
6
作者 葛欣 沈俭一 张惠良 《Science China Chemistry》 SCIE EI CAS 1996年第1期53-63,共11页
In H2/N2 atmosphere, the reduction behavior of the stoichiometric compound, Fe2(MoO4)3, was studied by in-situ Mossbauer spectroscopy (in-situ MBS), temperature-programmed reduction (TPR) and X-ray diffraction (XRD). ... In H2/N2 atmosphere, the reduction behavior of the stoichiometric compound, Fe2(MoO4)3, was studied by in-situ Mossbauer spectroscopy (in-situ MBS), temperature-programmed reduction (TPR) and X-ray diffraction (XRD). The results showed that the reduction products, β-FeMoO4, Mo4O11, MoO2, Fe3O4, Fe2Mo3O8, Fe and Mo, as well as iron-molybdenum alloys, were formed subsequently when the reduction temperature was raised. It was found that when Mo6+ were reduced to Mo4+, Fe2+ were oxidized to Fe3+. Due to the interactions among the metal ions and the electron transfers, the reduction processes of the metal ions in Fe2(MoO4)3 are very complex. According to the results of XRD and MBS obtained at various TPR stages, the reaction equations for the reduction stages were proposed. The Mossbauer spectrum of an intermediate species, Fe2Mo3O8, was found to exhibit two doublets, with I.S.=0.90mm/s and Q.S. =0.58 mm/s, and I.S. = 1.02mm/s and Q.S. = 1.04mm/s, respectively. 展开更多
关键词 Fe2(MoO4)3 temperature-programmed reduction XRD IN-SITU MOSSBAUER spectroscopy.
原文传递
Localized enriching nitrate/proton on reconstituted Fe nanoparticles boosting electrocatalytic nitrate reduction to ammonia 被引量:1
7
作者 Shiyu Li Jin Yan +1 位作者 Meihuan Liu Hui Su 《Journal of Energy Chemistry》 2025年第4期682-691,共10页
The electrochemical conversion of nitrate,a widespread water pollutant,into valuable ammonia represents a green and decentralized approach to ammonia synthesis.However,the sluggish multielectronproton coupling path an... The electrochemical conversion of nitrate,a widespread water pollutant,into valuable ammonia represents a green and decentralized approach to ammonia synthesis.However,the sluggish multielectronproton coupling path and the low reactive species(nitrate and proton)concentration at the catalyst interface inhibit the efficiency of ammonia production from nitrate reduction reaction(NitRR).Herein,we introduce a novel iron-based tandem catalyst encapsulated by reduced graphene oxide(denoted as Fe-rGO),with a superior ammonia production rate of 47.815 mg h^(-1)mg_(ca)^(t-1)and a high Faraday efficiency(FE)of 96.51%at an applied potential of-0.5 V.It also delivers a robust stability with FE above90%under a current density of 250 mA cm^(-2)for 50 h.In situ X-ray absorption spectroscopy reveals that the FeO_(x)is dynamically translated to Fe~0 site concurrently with the enhancement of the NH_(3)production rate,suggesting the Fe^(0) site as hydrogenation active center.The asymmetric distribution of surface charges of rGO not only enriches nitrate ions at the catalytic interface and promotes the hydrogenation process in NitRR,but also protects the iron species and ensures their stability during electrolysis.The Zn-NO_(3)^(-)battery demonstrates an impressive FE of 88.6%,highlighting its exceptional potential for practical applications. 展开更多
关键词 Electrocatalytic nitrate reduction Dynamically reconstituted Long-term stability Oxygen reduction reaction In-situ characterization
在线阅读 下载PDF
Numerical simulation of the deformation risk in thin slab continuous casting process with liquid core reduction 被引量:1
8
作者 Zhida Zhang Jize Chen +3 位作者 Cheng Ji Yutang Ma Miaoyong Zhu Wenxue Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1114-1127,共14页
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de... The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively. 展开更多
关键词 thin slab continuous casting liquid core reduction three-dimensional thermal-mechanical critical strain crack risk maxim-um theoretical reduction amount
在线阅读 下载PDF
In-situ reduction mechanism of hematite by bastnaesite during suspension magnetization roasting 被引量:1
9
作者 Wen-bo LI Shao-kai CHENG +1 位作者 Rui QU Ji-jia CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第3期965-974,共10页
To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,... To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,roasting time,and bastnaesite-to-hematite mass ratio on in-situ reduction of hematite in a N_(2)atmosphere.Relevant analytical tests were used to explore the mineral phase evolution during roasting,the magnetism and microstructure of the roasted products,the phase composition,and the surface element valence of concentrate.It was found that magnetic separation of the iron concentrate afforded an iron grade of 68.87%and a recovery of 93.18%under the optimum roasting conditions.During roasting,bastnaesite decomposed to generate CO_(2)and CO,and the compact structure of hematite was gradually destroyed,resulting in microcracks.Subsequently,the CO entered the surface of the hematite through the microcracks and reacted to form a magnetite shell,and the magnetite-encapsulated hematite particles were recovered via low-intensity magnetic separation. 展开更多
关键词 BASTNAESITE HEMATITE magnetization roasting in-situ reduction
在线阅读 下载PDF
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:2
10
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Nitrogen-cycling processes under long-term compound heavy metal(loids)pressure around a gold mine:Stimulation of nitrite reduction 被引量:1
11
作者 Xuesong Hu Xiaoxia Liu +1 位作者 Shuo Zhang Caihong Yu 《Journal of Environmental Sciences》 2025年第1期571-581,共11页
Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This ... Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids)exposure.The results showed that the diversity and abundance of nitrogen-cyclingmicroorganisms showed negative feedback to heavy metal(loids)concentrations.Denitrifying microorganisms were shown to be the dominant microorganisms with over 60%of relative abundance and a complex community structure including 27 phyla.Further,the key bacterial species in the denitrification process were calculated using a random forest model,where the top three key species(Pseudomonas stutzei,Sphingobium japonicum and Leifsonia rubra)were found to play a prominent role in nitrite reduction.Functional gene analysis and qPCR revealed that nirK,which is involved in nitrite reduction,significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%.The experimental results confirmed that the activity of nitrite reductase(Nir)encoded by nirK in the soil was increased at high concentrations of heavy metal(loids).Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids),the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species.The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids). 展开更多
关键词 N cycle Nitrite reduction Nitrite reductase METAGENOME Key species
原文传递
Sustainable ammonia synthesis:Opportunities for electrocatalytic nitrate reduction 被引量:1
12
作者 Haoxuan Jiang Tianyu Li +11 位作者 Yuting Gao Jieping Fan Dingwei Gan Shuai Yuan Longfei Hong Yue Feng Jing Sun Qiang Song Tianqi Zhang Ali Rouhzollah Jalili Patrick J.Cullen Renwu Zhou 《Journal of Energy Chemistry》 2025年第6期630-668,I0014,共40页
Ammonia is the cornerstone of modern agriculture,providing a critical nitrogen source for global food production and serving as a key raw material for numerous industrial chemicals.Electrocatalytic nitrate reduction,a... Ammonia is the cornerstone of modern agriculture,providing a critical nitrogen source for global food production and serving as a key raw material for numerous industrial chemicals.Electrocatalytic nitrate reduction,as an environmentally friendly method for synthesizing ammonia,not only mitigates the reliance on current ammonia synthesis processes fed by traditional fossil fuels but also effectively reduces nitrate pollution resulting from agricultural and industrial activities.This review explores the fundamental principles of electrocata lytic nitrate reduction,focusing on the key steps of electron transfer and ammonia formation.Additionally,it summarizes the critical factors influencing the performance and selectivity of the reaction,including the properties of the electrolyte,operating voltage,electrode materials,and design of the electrolytic cell.Further discussion of recent advances in electrocatalysts,including pure metal catalysts,metal oxide catalysts,non-metallic catalysts,and composite catalysts,highlights their significant roles in enhancing both the efficiency and selectivity of electrocata lytic nitrate to ammonia(NRA)reactions.Critical challenges for the industrial NRA trials and further outlooks are outlined to propel this strategy toward real-world applications.Overall,the review provides an in-depth overview and comprehensive understanding of electrocata lytic NRA technology,thereby promoting further advancements and innovations in this domain. 展开更多
关键词 Nitrate reduction reaction Ammonia synthesis ELECTROCATALYSTS MECHANISMS Influencing factors
在线阅读 下载PDF
Interfacial Pt-N coordination for promoting oxygen reduction reaction 被引量:1
13
作者 Jialin Cai Yizhe Chen +5 位作者 Ruiwen Zhang Cheng Yuan Zeyu Jin Yongting Chen Shiming Zhang Jiujun Zhang 《Chinese Chemical Letters》 2025年第2期481-485,共5页
Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange... Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells.For fundamental understanding,clearly identifying the metalsupport effect on enhancement mechanisms of ORR electrocatalysis is definitely needed.In this work,the impact of Pt-support interaction via interfacial Pt-N coordination on electrocatalytic ORR activity and stability in Pt/N-C catalyst is deeply studied through structural/compositional characterizations,electrochemical measurements and theoretical DFT-calculations/AIMD-simulations.The resulting Pt/N-C catalyst exhibits a superior electrocatalytic performance compared to the commercial Pt/C catalyst in both half-cell and H_(2)-O_(2)fuel cell.Experimental and theoretical results reveal that the interfacial Pt-N coordination enables electron transfer from N-C support to Pt nanoparticles,which can weaken the adsorption strength of oxygen intermediates on Pt surface to improve ORR activity and induce the strong Pt-support interaction to enhance electrochemical stability. 展开更多
关键词 Oxygen reduction reaction N-doped carbon PLATINUM Pt-N Theoretical calculations
原文传递
Harnessing S-scheme junctions for enhanced CO_(2) photoreduction:molecular bonding of copper(Ⅱ)complexes onto K-doped polymeric carbon nitride via microwave heating 被引量:2
14
作者 Ming-Yu Heng Hong-Lei Shao +5 位作者 Jie-Ting Sun Qian Huang Shu-Ling Shen Guang-Zhi Yang Yu-Hua Xue Shu-Ning Xiao 《Rare Metals》 2025年第2期1108-1121,共14页
Photocatalytic conversion of CO_(2) is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development.Nowadays,polymeric carbon nitride(PCN)has gained widespread application in CO_(2)... Photocatalytic conversion of CO_(2) is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development.Nowadays,polymeric carbon nitride(PCN)has gained widespread application in CO_(2) solar reduction due to its excellent visible light response,suitable conduction band position,and good cost-effectiveness.However,the amorphous nature and low conductivity of PCN limit its photocatalytic efficiency by leading to low carrier concentrations and facile electron–hole recombination during photocatalysis.Addressing this bottleneck,in this study,potassium-doped PCN(KPCN)/copper(Ⅱ)-complexed bipyridine hydroxyquinoline carboxylic acid(Cu(Ⅱ)(bpy)(H_(2)hqc))composite catalysts were synthesized through a multistep microwave heating process.In the composite,the formation of an S-scheme junction facilitates the enrichment of more negative electrons on the conduction band of KPCN via intermolecular electron–hole recombination between Cu(Ⅱ)(bpy)(H_(2)hqc)(CuPyQc)and KPCN,thereby promoting efficient photoreduction of CO_(2) to CO.Microwave heating enhances the amidation reaction between these two components,achieving the immobilization of homogeneous molecular catalysts and forming amidation chemical bonds that serve as key channels for the S-scheme charge transfer.This work not only presents a new PCN-based catalytic system for CO_(2) reduction applications,but also offers a novel microwave-practical approach for immobilizing homogeneous catalysts. 展开更多
关键词 Photocatalytic CO_(2)reduction Microwave synthesis Polymeric carbon nitride Amide bond Sscheme
原文传递
Understanding amorphous PrO_(x)-based N-doped carbon catalyst as an efficient electrocatalyst for oxygen reduction reaction 被引量:1
15
作者 Xiao Man Ying Chang +2 位作者 Shaohong Guo Meilin Jia Jingchun Jia 《Journal of Rare Earths》 2025年第1期73-80,I0003,共9页
The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-bas... The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-based catalyst PrO_(x)-NC,and optimized the calcination temperature and proportion.The PrO_(x)-NC-900 catalyst has high durability and activity and exhibits superior ORR performance in alkaline electrolytes with an onset potential(E_(0))of 0.96 V and a half-wave potential(E_(1/2))of 0.85 V.The research results indicate that the ORR performance of rare earth oxide composite carbon catalysts can be improved by adjusting oxygen vacancies(Ov).In addition,high specific surface area,N rich defect carbon.increased oxygen vacancies,and the synergistic effect of oxygen vacancies and N-doped carbon interfacial layer play a significant part in the enhancement of ORR.The performance of the zinc air battery assembled with PrO_(x)-NC-900 is significantly improved,and rare earth oxides and carbon frameworks originating from metal organic frameworks(MOFs)contribute to the oxygen electrocatalyst and electron transfer rate of the zinc air battery.This catalyst provides promising information for the development of rare earth metal oxide nanostructures as potential candidate materials for ORR in alkaline media. 展开更多
关键词 Rare earths Metal-organic framework Oxygen reduction reaction Zn-air batteries
原文传递
Radiation reduction modification of sp^(2) carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(Ⅵ) removal 被引量:1
16
作者 Shouchao Zhong Yue Wang +6 位作者 Mingshu Xie Yiqian Wu Jiuqiang Li Jing Peng Liyong Yuan Maolin Zhai Weiqun Shi 《Chinese Chemical Letters》 2025年第5期277-282,共6页
A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for ... A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy. 展开更多
关键词 Covalent organic framework Gamma radiation Photocatalytic reduction CHROMIUM Water purification
原文传递
Iron-doping regulated light absorption and active sites in LiTaO_(3) single crystal for photocatalytic nitrogen reduction 被引量:1
17
作者 Zhenfei Tang Yunwu Zhang +10 位作者 Zhiyuan Yang Haifeng Yuan Tong Wu Yue Li Guixiang Zhang Xingzhi Wang Bin Chang Dehui Sun Hong Liu Lili Zhao Weijia Zhou 《Chinese Chemical Letters》 2025年第3期206-211,共6页
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept... In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes. 展开更多
关键词 Nitrogen reduction PHOTOCATALYSIS Fe doping Single crystal Lithium tantalate crystal
原文传递
Influence of heavy reduction during solidification process of billets based on 3D reconstruction of dendrites 被引量:1
18
作者 Yi Nian You-cheng Zong +3 位作者 Chao-jie Zhang Xin-yu Tang Jia-le Li Li-qiang Zhang 《Journal of Iron and Steel Research International》 2025年第6期1596-1611,共16页
The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of den... The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of dendritic solidification structures.Combining scanning electron microscopy and energy-dispersive scanning analysis and ANSYS simulation,the high-precision image processing software Mimics Research was utilized to conduct the extraction of dendritic morphologies.Reverse engineering software NX Imageware was employed for the 3D reconstruction of two-dimensional dendritic morphologies,restoring the dendritic characteristics in three-dimensional space.The results demonstrate that in a two-dimensional plane,dendrites connect with each other to form irregularly shaped“ring-like”structures.These dendrites have a thickness greater than 0.1 mm along the Z-axis direction,leading to the envelopment of molten steel by dendrites in a 3D space of at least 0.1 mm.This results in obstructed flow,confirming the“bridging”of dendrites in three-dimensional space,resulting in a tendency for central segregation.Dense and dispersed tiny dendrites,under the influence of heat flow direction,interconnect and continuously grow,gradually forming primary and secondary dendrites in three-dimensional space.After the completion of dendritic solidification and growth,these microdendrites appear dense and dispersed on the two-dimensional plane,providing the nuclei for the formation of new dendrites.When reduction occurs at a solid fraction of 0.46,there is a noticeable decrease in dendritic spacing,resulting in improved central segregation. 展开更多
关键词 SOLIDIFICATION Dendritic growth 3D reconstruction Heavy reduction Central segregation
原文传递
Rational design and fabrication of S-scheme NiTiO_(3)/CdS heterostructures for photocatalytic CO_(2) reduction 被引量:1
19
作者 Junjian Cai Xinyu Li +5 位作者 Bo Su Binbin Guo Xiahui Lin Wandong Xing Xue Feng Lu Sibo Wang 《Journal of Materials Science & Technology》 2025年第31期82-89,共8页
Presented herein are the delicate design and synthesis of S-scheme NiTiO_(3)/CdS heterostructures composed of CdS nanoparticles anchored on the surface of NiTiO_(3) nanorods for photocatalytic CO_(2) reduction.Systema... Presented herein are the delicate design and synthesis of S-scheme NiTiO_(3)/CdS heterostructures composed of CdS nanoparticles anchored on the surface of NiTiO_(3) nanorods for photocatalytic CO_(2) reduction.Systematic physicochemical studies demonstrate that NiTiO_(3)/CdS hybrid empowers superior light absorption and enhanced CO_(2) capture and activation.Electron spin resonance validates that the charge carriers in NiTiO_(3)/CdS follow a S-scheme transfer pathway,which powerfully impedes their recombination and promotes their separation.Importantly,the photogenerated holes on CdS are effectively consumed at the hero-interface by the electron from NiTiO_(3),preventing the photo-corrosion of the metal sulfide.As a result,with Co(bpy)_(3)^(2+)as a cocatalyst,NiTiO_(3)/CdS displays a considerable performance for CO_(2) reduction,affording a high CO yield rate of 20.8µmol h^(−1).Moreover,the photocatalyst also manifests substantial stability and good reusability for repeated CO_(2) reaction cycles in the created tandem photochemical system.In addition,the possible CO_(2) photoreduction mechanism is constructed on the basis of the intermediates monitored by in-situ diffuse reflectance infrared Fourier transform spectroscopy. 展开更多
关键词 Photocatalysis S-scheme CO_(2)reduction HETEROJUNCTION NiTiO_(3)
原文传递
In situ construction of Cu(Ⅰ)-Cu(Ⅱ) pairs for efficient electrocatalytic nitrate reduction reaction to ammonia 被引量:1
20
作者 Muyun Zheng Yuchi Wan +7 位作者 Leping Yang Shen Ao Wangyang Fu Zhengjun Zhang Zheng-Hong Huang Tao Ling Feiyu Kang Ruitao Lv 《Journal of Energy Chemistry》 2025年第1期106-113,共8页
Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in... Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states. 展开更多
关键词 Ammonia synthesis Cu oxidation state ELECTROCHEMISTRY Nitrate reduction In situ XPS
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部