期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
Constitutive Model and Microstructure Evolution of Asextruded Ti-6554 Alloy Based on Temperature Rise Correction
1
作者 Li Changmin Luo Hengjun +6 位作者 Zhao Ning Guo Shiqi Wei Minggang Xiang Wei Cui Mingliang Xie Jing Huang Liang 《稀有金属材料与工程》 北大核心 2025年第9期2189-2198,共10页
The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculat... The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX. 展开更多
关键词 as-extruded Ti-6554 alloy temperature rise correction constitutive model microstructure evolution
原文传递
Temperature Prediction of the Clamp-Conductor Coupling Zone in Transmission Lines
2
作者 Long Zhao QiZhao +2 位作者 SiyuanZhou Chenyang Fan Chao Ji 《Frontiers in Heat and Mass Transfer》 2025年第5期1455-1475,共21页
The temperature prediction of the Clamp-conductor coupling zone plays a crucial role in ensuring the safe and stable operation of overhead transmission lines and optimizing the thermal stability margin of transmission... The temperature prediction of the Clamp-conductor coupling zone plays a crucial role in ensuring the safe and stable operation of overhead transmission lines and optimizing the thermal stability margin of transmission lines.While existing research in this field has thoroughly explored temperature rise prediction,the focus has been relatively narrow,either targeting conductors exclusively or focusing solely on clamps,with little attention given to the temperature rise in the conductor-clampcoupling zoneor the influenceof clamp temperatureonconductor temperature rise.Based on this,considering axial heat transfer between the clamp and the conductor,this study develops a thermal model to calculate temperature in the clamp-conductor interface zone.A Whale Optimization Algorithm(WOA)-based parameter identification method is employed to overcome challenges in determining model parameters.To validate model performance,a current-carrying temperature-rise experimental platform was designed to supply data for both model verification and parameter identification.By comparing the calculation results with the experimental data,the results show that the maximum average error does not exceed 1.4%,and the maximum error is only 2.79%,verifying the validity of the parameter identificationmethod and thermalmodel.Thiswork lays a theoretical foundation for predicting temperature distributions at clamp-conductor interfaces under realistic meteorological conditions and supports short-termdynamic capacity increases for overhead conductors,demonstrating significant practical relevance. 展开更多
关键词 Clamp-conductor coupling zone temperature rise model parameter identification axial heat transfer
在线阅读 下载PDF
Response of Saline-alkali Cropland Soil CO_(2)Fluxes to Nitrogen Fertilization,Irrigation and Temperature via DAYCENT Modeling
3
作者 Peng ZHANG Hanxiao FENG +2 位作者 Liming LAI Haiwei WANG Yang YANG 《Agricultural Biotechnology》 2025年第3期56-63,共8页
A growing global demand exists to formulate plans to lessen the greenhouse gas emissions produced by agricultural activities.The purpose of this study was to uncovered the changes in soil CO_(2)fluxes under varying sc... A growing global demand exists to formulate plans to lessen the greenhouse gas emissions produced by agricultural activities.The purpose of this study was to uncovered the changes in soil CO_(2)fluxes under varying scenarios including nitrogen fertilization rates,irrigation rates,and air temperatures in the Hetao Irrigation District(HID)over the 38-year period.DAYCENT model was used to predict carbon dioxide(CO_(2))fluxes from cultivated soils in the HID,Inner Mongolia from^(2)023 to 2060(the year of achieving the"carbon neutrality"goal)in this study.Results showed that mean soil CO_(2)fluxes in the sunflower field[1035.13 g/(m^(2).yr)]were significantly lower than those in the maize field[1405.54 g/(m^(2).yr)].An increase in nitrogen fertilization rate led to a significant escalation in soil CO_(2)fluxes.Moreover,elevating irrigation rates for washing salts by irrigation(WSBI)diminished soil CO_(2)fluxes in the sunflower field while amplifying them in the maize field.A rise in air temperature resulted in an increase in soil CO_(2)fluxes from the maize field,with annual increases observed,but a reduction in soil CO_(2)fluxes from the sunflower field.The sunflower fields in the HID have a more substantial advantage than the corn fields in mitigating soil CO_(2)emissions. 展开更多
关键词 Soil CO_(2)flux Nitrogen fertilization rate SUNFLOWER Washing salts by irrigation Rising temperature DAYCENT model Hetao Irrigation District
在线阅读 下载PDF
Quantitative analysis of Arctic ice flow acceleration with increasing temperature 被引量:6
4
作者 Zemin Wang Boya Yan +3 位作者 Songtao Ai Kim Holmén Jiachun An Hongmei Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第1期22-32,共11页
This study explores the ice flow acceleration(21.1%)of Pedersenbreen during 2016–2017 after the extremely warm winter throughout the whole Arctic in 2015/2016 using in situ data and quantitatively analyses the factor... This study explores the ice flow acceleration(21.1%)of Pedersenbreen during 2016–2017 after the extremely warm winter throughout the whole Arctic in 2015/2016 using in situ data and quantitatively analyses the factors contributing to this acceleration.Several data sets,including 2008–2018 air temperature data from Ny-?lesund,ten-year in situ GPS measurements and Elmer/Ice ice flow modelling under different ice temperature scenarios,suggest that the following factors contributed to the ice flow acceleration:the softened glacier ice caused by an increase in the air temperature(1.5℃)contributed 2.7%–30.5%,while basal lubrication contributed 69.5%–97.3%.The enhanced basal sliding was mostly due to the increased surface meltwater penetrating to the bedrock under the rising air temperature conditions;consequently,the glacier ice flow acceleration was caused mainly by an increase in subglacial water.For Pedersenbreen,there was an approximately one-year time lag between the change in air temperature and the change in glacier ice flow velocity. 展开更多
关键词 ice flow velocity Arctic temperature rising Pedersenbreen Elmer/Ice MELTWATER
在线阅读 下载PDF
Dynamic performance and temperature rising characteristic of a high-speed on/off valve based on pre-excitation control algorithm 被引量:7
5
作者 Qi ZHONG Enguang XU +2 位作者 Geng XIE Xiele WANG Yanbiao LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期445-458,共14页
High speed on/off valve(HSV)is an essential component in aerospace digital hydraulic systems(ADHS).Dynamic performance and temperature rising characteristic are two important features,which determine the performance o... High speed on/off valve(HSV)is an essential component in aerospace digital hydraulic systems(ADHS).Dynamic performance and temperature rising characteristic are two important features,which determine the performance of HSV,and affect the response speed and reliability of ADHS.Increasing the driving voltage is an effective method for improving the dynamic performance of HSV.However,continuous high voltage excitation will lead to more wasted energy,higher temperature rising and lower reliability.To solve this problem,a pre-excitation control algorithm(PECA)is proposed in this paper based on the theoretical model of the influence of electrical parameters on dynamic performance and temperature rising characteristics.In PECA,an appropriate initial coil current is generated by pre-excitation instead of increasing driving voltage,which significantly shortens the switching delay time.Then,based on real-time current online calculation and feedback mechanism,the adaptive switching of five equivalent voltages is realized.Consequently,the coil current can be rapidly kept at the expected state without consuming more energy and generating more heat.Results indicate that compared with conventional PWM control algorithm,the PECA can improve dynamic performance of HSV,shorten the total switching time by 71.5%,and increase the maximum operation frequency.Therefore,the linear area of flow characteristic is expended by 80.0%,the adjusting time of HSV-controlled system is reduced by 23%,while shortening steady error by 46.7%.Moreover,the temperature rising characteristics of HSV are better,the maximum operation temperature is reduced by 68.6%,and the time to reach the steady state temperature is shortened by 20%.From the results,it can be concluded that the PECA is not only an effective and practical control algorithm for improving the performance of HSVs and HSV-controlled systems while reducing the heat generation and decreasing the temperature rising of HSV,but also can be a potential solution in ADHS. 展开更多
关键词 High speed on/off valve Dynamic performance Pre-excitation temperature rising Flow characteristic
原文传递
A Model for Temperature Infl uence on Concrete Hydration Exothermic Rate (Part one: Theory and Experiment) 被引量:6
6
作者 朱振泱 QIANG Sheng CHEN Weimin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第3期540-545,共6页
Recent achievements in concrete hydration exothermic models based on Arrhenius equation have improved computation accuracy for mass concrete temperature field. But the properties of the activation energy and the gas c... Recent achievements in concrete hydration exothermic models based on Arrhenius equation have improved computation accuracy for mass concrete temperature field. But the properties of the activation energy and the gas constant (Ea/R) have not been well studied yet. From the latest experiments it is shown that Ea/R obviously changes with the hydration degree without fixed form. In this paper, the relationship between hydration degree and Ea/R is studied and a new hydration exothermic model is proposed. With those achievements, the mass concrete temperature field with arbitrary boundary condition can be calculated more precisely. 展开更多
关键词 hydration exothermic model Arrhenius equation activation energy hydration degree temperature rise model
原文传递
Temperature Rise Characteristics of Carbon-Containing Chromite Ore Fines in Microwave Field 被引量:5
7
作者 LI Ning CHEN Jin +3 位作者 YAN Hong FENG Xiu-mei CUI Hui-jun LIU Jin-ying 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第1期1-5,共5页
To avoid the nonuniform phenomena of heat and mass transfer of metallurgical powdery materials caused by conventional heating method,the temperature rise characteristics of carbon-containing chromite ore fines in the ... To avoid the nonuniform phenomena of heat and mass transfer of metallurgical powdery materials caused by conventional heating method,the temperature rise characteristics of carbon-containing chromite ore fines in the microwave field were investigated using microwave heating in a microwave metallurgical furnace.The experimental results show that the carbon-containing chromite ore fines have better temperature rise characteristics in the microwave field at a frequency of 2.45 GHz.After heated in the microwave field of 10 kW,the temperature of 1 kg carbon-containing chromite ore fines rose up to 1 100 ℃ in 7 min,at a temperature rise rate of 157.1(℃·min-1·kg-1),whereas the temperature of 1 kg carbon-containing magnetite ore fines rose only up to 1 000 ℃ in 10 min,at a temperature rise rate of 100(℃·min-1·kg-1).With increasing carbon-fitting ratios and by adding calcic lime,their heating effects changed regularly. 展开更多
关键词 carbon-containing chromite ore fine carbon-containing magnetite ore fine microwave fieldl temperature rise characteristics
原文传递
Influence of Particles on the Loading Capacity and the Temperature Rise of Water Film in Ultra-high Speed Hybrid Bearing 被引量:3
8
作者 ZHU Aibin LI Pei +2 位作者 ZHANG Yefan CHEN Wei YUAN Xiaoyang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期541-548,共8页
Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant an... Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings. 展开更多
关键词 hybrid bearing liquid-solid flow solid particles loading capacity temperature rise
在线阅读 下载PDF
Large magnetic entropy change and adiabatic temperature rise of a ternary Gd_(34)Ni_(33)Al_(33) metallic glass 被引量:3
9
作者 Xin Wang Qiang Wang +3 位作者 Benzhen Tang Peng Yu Lei Xia Ding Ding 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第8期998-1002,共5页
A low cost Gd_(34)Ni_(33)Al_(33) metallic glass with excellent magnetocaloric properties was successfully prepared in the present work.The magnetic properties of the ribbons were measured by constructing the relations... A low cost Gd_(34)Ni_(33)Al_(33) metallic glass with excellent magnetocaloric properties was successfully prepared in the present work.The magnetic properties of the ribbons were measured by constructing the relationship of magnetic entropy change(-ΔS_(m)) on temperature as well as magnetic field.The amorphous alloy shows typical magnetocaloric behaviors,large maximum-ΔS_(m)(11.06 J/(kg·K) under 5 T)and adiabatic temperature rise(4.3 K under 5 T) near 40 K,indicating that the low cost Gd_(34)Ni_(33)Al_(33) metallic glass is a good candidate material for low temperature magnetic refrigeration. 展开更多
关键词 Amorphous materials Magneto-caloric effect Magnetic entropy change Adiabatic temperature rise Rare earths
原文传递
Feasibility Research of Using Phase Change Materials to Reduce the Inner Temperature Rise of Mass Concrete 被引量:3
10
作者 钱春香 GAO Guibo +1 位作者 HE Zhihai 李瑞阳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期989-994,共6页
In order to evaluate the feasibility of using phase change materials to reduce the inner temperature rise of mass concrete, the interior temperature of normal concrete specimen under semi-adiabatic curing condition wa... In order to evaluate the feasibility of using phase change materials to reduce the inner temperature rise of mass concrete, the interior temperature of normal concrete specimen under semi-adiabatic curing condition was measured. The effect of embedding phase change material(PCM) and replacing water with suspension of phase change material(SPCM) as cooling fluid were compared in the experiment. The cooling effect and the affecting factors were analyzed and calculated. The research results showed that the peak of inner temperature could be decreased obviously by the method of pre-embeding PCM in concrete, however, this method is only effective in the initial stage of cement hydration process. Besides, the volume of PCM is rather big and the PCM can not be used circularly, which means that this method can only be used under special condition and the feasibility is low. When SPCM was used as cooling fluid, the interior temperature rise of mass concrete was reduced more effectively, and the temperature grads peak around the cooling pipe was also reduced. Besides, both the SPCM consumption amount and the circulation time were decreased, and most important is that the SPCM is recyclable. The technical and economical feasibility of using SPCM to reduce the inner temperature rise of mass concrete is high. 展开更多
关键词 phase change material suspension of phase change material mass concrete interior temperature rise FEASIBILITY
原文传递
Effect of rapidly depressurizing and rising temperature on methane hydrate dissociation 被引量:12
11
作者 Qingbai Wu Yingmei Wang Jing Zhan 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期91-97,共7页
Two methods, rapidly depressurizing to 0.1 MPa at a constant temperature and rising temperature under equilibrium P, T conditions, were used to study the dissociation of pure CH4 hydrate formed below the ice point. At... Two methods, rapidly depressurizing to 0.1 MPa at a constant temperature and rising temperature under equilibrium P, T conditions, were used to study the dissociation of pure CH4 hydrate formed below the ice point. At a constant temperature with rapidly depressurizing to 0.1 MPa, CH4 hydrate dissociated rapidly at initial dissociation and then the dissociation rate gradually decreased. However, the dissociation of CH4 hydrate at temperatures of 261 to 266 K was much faster than that at temperatures of 269 to 272 K, indicating its anomalous preservation. Under an equilibrium P, T conditions, rising temperature had extensively controlling impact on dissociation of CH4 hydrate at equilibrium pressures of 2.31, 2.16 and 1.96 MPa. In this study, we report the effect of pressure on CH4 hydrate dissociation, especially the effect of equilibrium pressure on dissociation at various melting temperatures. And we find that the ice particles size of CH4 hydrate formed may dominant the CH4 hydrate dissociation. Dissociation of CH4 hydrate formed from ice particles of smaller than 250 μm may not have an anomalous preservation below the ice point, while particles larger than 250 μm may have more extensive anomalous preservation. 展开更多
关键词 dissociation of CH4 hydrate method of rapid depressurization method of rising temperature
在线阅读 下载PDF
Response of N_2O Emissions of Farmland Ecosystem on Temperature Rising
12
作者 刘柳松 施建成 《Agricultural Science & Technology》 CAS 2012年第9期1962-1966,共5页
[Objective] The aim was to study on response of N2O emissions of farm- land ecosystem on temperature rising. [Methed] In farmland ecosystem in Huaibei City in Anhui Province, N2O emission by twelve varieties of crop o... [Objective] The aim was to study on response of N2O emissions of farm- land ecosystem on temperature rising. [Methed] In farmland ecosystem in Huaibei City in Anhui Province, N2O emission by twelve varieties of crop on temperature was researched with DeNitrification-DeComposition (NDC). [Result] Response of dry- land crop on temperature rising can be divided into three categories, as follows: The first category, N2O emission of crop changed little during the temperature increasing, for example, from 0 to 3 %;, the emissions by potatoes, cotton, maize and rapeseed increased little and decreased little when temperature changed from 1.5 to 3 ℃. Crops of the second category declined with temperature increasing in N2O emission, for example, N2O emission decreased by 8.1% with temperature increasing from 0 to 3 ℃, including sugar cane, tobacco, wheat, soybean and pea. In third category, N2O emission of crop grew with temperature increasing, for example, the emission of rice, vegetables and fruit trees increased by 22.8% when the temperature grew from 0 to 3 ℃. [Conclusion] The research indicated that N2O emission in ecosystem of drv farmland increased little with temoerature risina. 展开更多
关键词 Arid land Farmland ecosystem N20 emission temperature rising
在线阅读 下载PDF
Physical, Psychological, and Social Health Impact of Temperature Rise Due to Urban Heat Island Phenomenon and Its Associated Factors 被引量:3
13
作者 Li Ping WONG Haridah Alias +2 位作者 Nasrin Aghamohammadi Sima Aghazadeh Nik Meriam Nik Sulaiman 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2018年第7期545-550,共6页
The Urban Heat Island Effect(UHI)has now become a commonly observed phenomenon worldwide.Indeed,it has become a significant environmental effect of urbanisation.In Malaysia,research results showed that UHI effects a... The Urban Heat Island Effect(UHI)has now become a commonly observed phenomenon worldwide.Indeed,it has become a significant environmental effect of urbanisation.In Malaysia,research results showed that UHI effects are very evident in several cities such as Kuala Lumpur and Putrajaya.UHI effect has long been observed to cause temperature of cities. 展开更多
关键词 AS UHI PSYCHOLOGICAL and Social Health Impact of temperature Rise Due to Urban Heat Island Phenomenon and Its Associated Factors PHYSICAL
在线阅读 下载PDF
Effects of vapour bubbles on acoustic and temperature distributions of therapeutic ultrasound 被引量:2
14
作者 范庭波 章东 +2 位作者 张喆 马勇 龚秀芬 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第9期3372-3377,共6页
This paper describes the evolution of vapour bubbles and its effect on nonlinear ultrasound propagation and temperature rise through tissues for therapeutic ultrasound. An acoustic-thermo coupling algorithm incorporat... This paper describes the evolution of vapour bubbles and its effect on nonlinear ultrasound propagation and temperature rise through tissues for therapeutic ultrasound. An acoustic-thermo coupling algorithm incorporating nonlinearity, diffraction, and temperature-dependent tissue properties, is employed to describe nonlinear ultrasound propagation and thermal effect. Results demonstrate that an obvious migration of peak pressure toward transducer surface is observed while the position of peak temperature changes little in liver tissue before the generation of vapour bubbles, and that the boiling region enlarges towards the surface of transducer in axial direction but increases slowly in radial direction after the generation of vapour bubbles. 展开更多
关键词 vapour bubbles ultrasound propagation temperature rise
原文传递
Correlation Analysis of Wind Turbine Temperature Rise and Exergy Efficiency Based on Field-Path Coupling 被引量:2
15
作者 Caifeng Wen Qiang Wang +4 位作者 Yang Cao Liru Zhang Wenxin Wang Boxin Zhang Qian Du 《Energy Engineering》 EI 2023年第7期1603-1619,共17页
To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems,the field-circuit coupling method is used to accurately solve the electromagnetic field ... To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems,the field-circuit coupling method is used to accurately solve the electromagnetic field and temperature field of the generator.The loss distribution of the motor is accurately obtained by considering the influence of external circuit characteristics on its internal physical field.By mapping the losses to the corresponding part of the three-dimensional finite element model of the motor,the temperature field is solved,and the global temperature distribution of the generator,considering the influence of end windings,is obtained.By changing the air gap length,permanent magnet thickness,and winding conductivity,the relationship between the loss,temperature rise,and exergy efficiency can be obtained.By optimizing the air gap length,permanent magnet thickness,and winding conductivity,the best configuration and material properties can improve the efficiency of the motor by up to 4%. 展开更多
关键词 Wind turbine field-path coupling temperature rise distribution exergy efficiency
在线阅读 下载PDF
Temperature Rise Calculation and Velocity Planning of Permanent Magnet Linear Synchronous Motor under Trapezoidal Speed 被引量:3
16
作者 Xuzhen Huang Zheng Wang +1 位作者 Yiwei Zhang Qiang Tan 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第3期225-234,共10页
For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a bal... For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance. 展开更多
关键词 Permanent magnet linear synchronous motor temperature rise velocity planning electromagnetic-fluidthermal field dynamic performance
在线阅读 下载PDF
Numerical analysis of temperature rise within 70MPa composite hydrogen vehicle cylinder during fast refueling 被引量:1
17
作者 王亮 郑传祥 +2 位作者 李蓉 陈冰冰 魏宗新 《Journal of Central South University》 SCIE EI CAS 2014年第7期2772-2778,共7页
The numerical simulation model for predicting fast filling process of 70 MPa type Ⅲ(with metal liner) hydrogen vehicle cylinder was presented,which has considered turbulence,real gas effect and solid heat transfer is... The numerical simulation model for predicting fast filling process of 70 MPa type Ⅲ(with metal liner) hydrogen vehicle cylinder was presented,which has considered turbulence,real gas effect and solid heat transfer issues.Through the numerical analysis method,the temperature distributions of the gas within the solid walls were revealed; adiabatic filling was studied to evaluate the heat dissipation during the filling; the influences of various filling conditions on temperature rise were analyzed in detail.Finally,cold filling was proposed to evaluate the effect on temperature rise and SoC(state of charge) within the cylinder.The hydrogen pre-cooling was proved to be an effective solution to reduce maximum temperature and acquire higher SoC during the filling process. 展开更多
关键词 fast filling numerical analysis temperature rise hydrogen vehicle cylinder state of charge
在线阅读 下载PDF
Estimation of Critical Rate of Temperature Rise for Thermal Explosion of First Order Autocatalytic Decomposition Reaction Systems by Using Non-isothermal DSC 被引量:1
18
作者 GUOPeng-jiang HURong-zu +8 位作者 ZHANGHai XIAZhi-ming SONGJi-rong GAOSheng-li NINGBin-ke SHIQi-zhen LIURong LUGui-e JIANGJi-you 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第2期163-165,共3页
A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained... A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained on the increasing rate of temperature for the first order autocatalytic decomposition of nitrocellulose containing 13.86% nitrogen converting into the thermal explosion. 展开更多
关键词 DSC Critical rate of temperature rise NC Non-isothermal change Thermal explosion
在线阅读 下载PDF
Auto-Test on Motor Temperature Rising in Electric Vehicles with Mutual MRAS 被引量:1
19
作者 王志福 张承宁 《Journal of Beijing Institute of Technology》 EI CAS 2008年第4期395-399,共5页
A new method to calculate the motor temperature rising in electric vehicle (EV) is proposed based on the stator resistance identification. The measure theory of the motor temperature rising with the stator resistanc... A new method to calculate the motor temperature rising in electric vehicle (EV) is proposed based on the stator resistance identification. The measure theory of the motor temperature rising with the stator resistance is discussed at first. An enhanced magnetism motor dynamic math model is built which is the research object. Then the resistance identification system model is built on the mutual model reference adaptive,system (MRAS) theory. The simulation diagram of the mutual MRAS model is constructed and the resistance identification performance is studied in different motor states. Simulation results indicate that the stator resistance identification model with the mutual MRAS is effective. At the same time, the identification of motor temperature rising is possible with the identification of the stator resistance. 展开更多
关键词 electric vehicle (EV) motor's temperature rising model reference adaptive system (MARS) resistance identification
在线阅读 下载PDF
Analysis of Temperature Rise in High-Speed Permanent Magnet Synchronous Traction Motors by Coupling the Equivalent Thermal Circuit Method and Computational Fluid Dynamics 被引量:1
20
作者 Jungang Jia 《Fluid Dynamics & Materials Processing》 EI 2020年第5期919-933,共15页
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ... To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors. 展开更多
关键词 Thermal circuit method computational fluid dynamics high-speed permanent magnet synchronous traction motor rotor temperature rise stator temperature rise
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部