期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Temperature stability of magnetic field for periodic permanent-magnet focusing system 被引量:1
1
作者 Li Li Jian-Ya Chen Yun-Jie Liu 《Rare Metals》 SCIE EI CAS CSCD 2014年第2期180-184,共5页
In this study, finite element analysis based on an Ansoft Maxwell software was used to reveal the temperature stability of a magnet ring and the equivalent structural periodic permanent-magnet(PPM) focusing system. ... In this study, finite element analysis based on an Ansoft Maxwell software was used to reveal the temperature stability of a magnet ring and the equivalent structural periodic permanent-magnet(PPM) focusing system. It is found that with the temperature increasing, the decrease rate of magnetic induction peak(Bz)maxof single magnet ring is greater than that of remanence Brof magnet in the range from room temperature to 200 °C, however,the PPM focusing system do have the same temperature characteristics of permanent-magnet materials. It indicates that the magnetic temperature properties of the PPM system can be effectively controlled by adjusting the temperature properties of the magnets. Moreover, the higher permeability of the magnets indicates the less Hcb, giving rise to lower magnetic induction peak (Bz)′max: Finally, it should be noted that the magnetic orientation deviation angle θ(/15°) of permanent magnets has little effect on the focusing magnetic field of the PPM system at different temperatures and the temperature stability. The obtained results are beneficial to the design and selection of permanent magnets for PPM focusing system. 展开更多
关键词 Periodic permanent-magnets focusing system Rare earth permanent magnets Finite element simulation temperature stability Wireless underground sensor network
原文传递
Influence of mode conversions in the skull on transcranial focused ultrasound and temperature fields utilizing the wave field separation method: A numerical study
2
作者 王祥达 林伟军 +1 位作者 苏畅 王秀明 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期401-414,共14页
Transcranial focused ultrasound is a booming noninvasive therapy for brain stimuli. The Kelvin–Voigt equations are employed to calculate the sound field created by focusing a 256-element planar phased array through a... Transcranial focused ultrasound is a booming noninvasive therapy for brain stimuli. The Kelvin–Voigt equations are employed to calculate the sound field created by focusing a 256-element planar phased array through a monkey skull with the time-reversal method. Mode conversions between compressional and shear waves exist in the skull. Therefore, the wave field separation method is introduced to calculate the contributions of the two waves to the acoustic intensity and the heat source, respectively. The Pennes equation is used to depict the temperature field induced by ultrasound. Five computational models with the same incident angle of 0?and different distances from the focus for the skull and three computational models at different incident angles and the same distance from the focus for the skull are studied. Numerical results indicate that for all computational models, the acoustic intensity at the focus with mode conversions is 12.05%less than that without mode conversions on average. For the temperature rise, this percentage is 12.02%. Besides, an underestimation of both the acoustic intensity and the temperature rise in the skull tends to occur if mode conversions are ignored. However, if the incident angle exceeds 30?, the rules of the over-and under-estimation may be reversed. Moreover,shear waves contribute 20.54% of the acoustic intensity and 20.74% of the temperature rise in the skull on average for all computational models. The percentage of the temperature rise in the skull from shear waves declines with the increase of the duration of the ultrasound. 展开更多
关键词 transcranial focused ultrasound temperature rise mode conversion wave field separation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部