期刊文献+
共找到408篇文章
< 1 2 21 >
每页显示 20 50 100
Fast and Accurate Prediction of Electromagnetic and Temperature Fields for SPMSM Equipped with Unequally Thick Magnetic Poles
1
作者 Feng Liu Xiuhe Wang +1 位作者 Lingling Sun Hongye Wei 《CES Transactions on Electrical Machines and Systems》 2025年第2期199-211,共13页
With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher ... With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher and higher.The importance of fast and accurate electromagnetic thermal coupling analysis of such motors becomes more and more prominent.In view of this,the surfacemounted PMSM(SPMSM)equipped with unequally thick magnetic poles is taken as the main object and its electromagnetic thermal coupling analytical model(ETc AM)is investigated.First,the electromagnetic analytical model(EAM)is studied based on the modified subdomain method.It realizes the fast calculation of key electromagnetic characteristics.Subsequently,the 3D thermal analytical model(TAM)is developed by combining the EAM,the lumped parameter thermal network method(LPTNM),and the partial differential equation of heat flux.It realizes the fast calculation of key thermal characteristics in 3D space.Further,the information transfer channel between EAM and TAM is built with reference to the intrinsic connection between electromagnetic field and temperature field.Thereby,the novel ETcAM is proposed to realize the fast and accurate prediction of electromagnetic and temperature fields.Besides,ETcAM has a lot to commend it.One is that it well accounts for the complex structure,saturation,and heat exchange behavior.Second,it saves a lot of computer resources.It offers boundless possibilities for initial design,scheme evaluation,and optimization of motors.Finally,the validity,accuracy,and practicality of this study are verified by simulation and experiment. 展开更多
关键词 Electromagnetic field and temperature field Electromagnetic thermal coupling analytical model(ETcAM) Fast and accurate prediction SPMSM Unequally thick magnetic poles
在线阅读 下载PDF
Real-Time Reconstruction of HIFU Focal Temperature Field Based on Deep Learning
2
作者 Shunyao Luan Yongshuo Ji +6 位作者 Yumei Liu Linling Zhu Haoyu Zhou Jun Ouyang Xiaofei Yang Hong Zhao Benpeng Zhu 《Biomedical Engineering Frontiers》 2024年第1期245-255,共11页
Objective and Impact Statement:High-intensity focused ultrasound(HIFU)therapy is a promising noninvasive method that induces coagulative necrosis in diseased tissues through thermal and cavitation effects,while avoidi... Objective and Impact Statement:High-intensity focused ultrasound(HIFU)therapy is a promising noninvasive method that induces coagulative necrosis in diseased tissues through thermal and cavitation effects,while avoiding surrounding damage to surrounding normal tissues.Introduction:Accurate and real-time acquisition of the focal region temperature field during HIFU treatment marked enhances therapeutic efficacy,holding paramount scientific and practical value in clinical cancer therapy.Methods:In this paper,we initially designed and assembled an integrated HIFU system incorporating diagnostic,therapeutic,and temperature measurement functionalities to collect ultrasound echo signals and temperature variations during HIFU therapy.Furthermore,we introduced a novel multimodal teacher-student model approach,which utilizes the shared self-expressive coefficients and the deep canonical correlation analysis layer to aggregate each modality data,then through knowledge distillation strategies,transfers the knowledge from the teacher model to the student model.Results:By investigating the relationship between the phantoms,in vitro,and in vivo ultrasound echo signals and temperatures,we successfully achieved real-time reconstruction of the HIFU focal 2D temperature field region with a maximum temperature error of less than 2.5℃.Conclusion:Our method effectively monitored the distribution of the HIFU temperature field in real time,providing scientifically precise predictive schemes for HIFU therapy,laying a theoretical foundation for subsequent personalized treatment dose planning,and providing efficient guidance for noninvasive,nonionizing cancer treatment. 展开更多
关键词 thermal cavitation noninvasive method deep learning real time reconstruction focal region temperature field diseased tissues high intensity focused ultrasound temperature field
原文传递
Surface Temperature Field of Ti-66Al and Ti-Al and Ti-4848Al AlloysAl Alloys Under Continuous Laser AblationUnder Continuous Laser Ablation 被引量:1
3
作者 Sun Ruochen Mi Guangbao 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2024年第9期2405-2412,共8页
The high temperature fire retardancy of titanium alloy is an important factor restricting its application in aero-engine,and the laser ignition method can accurately reflect the fire retardancy of titanium alloy under... The high temperature fire retardancy of titanium alloy is an important factor restricting its application in aero-engine,and the laser ignition method can accurately reflect the fire retardancy of titanium alloy under local heating.Due to the limitations of laser ignition experiments on the microscopic boundary and the transient propagation mechanism of the temperature field,molecular dynamics(MD)simulations and JMatPro calculation were applied to study the temperature field of Ti-6Al and Ti-48Al alloys.The results show that a molten pool is formed on the surface of Ti-Al alloys under continuous laser irradiation,and the temperature field of the molten pool is normally distributed from the center to the edge.When the center temperature reaches the critical point of ignition,the extended combustion occurs,and the extended combustion path advances along the direction of the air flow.Compared with Ti-6Al alloy,Ti-48Al alloy has higher fire retardancy under laser ablation.This is due to the better heat transfer performance of Ti-48Al,which leads to the weakening of the heat concentration effect near the boundary of the spot temperature field.So it is necessary to increase the partial pressure of oxygen,and thus to reduce the ignition point of the alloy in order to achieve the ignition boundary condition of Ti-48Al alloy under the same laser heat source.In the aspect of extended combustion path,the boundary heat collection effect of specimens shown by MD models reveals another mechanism affecting combustion expansion path besides the direction of air flow.That is,the heat generated by the laser spot is interrupted when it is transmitted to the boundary of the specimen along the short side direction,resulting in a concentration of heat near the boundary.So the combustion path also tends to expand along this direction. 展开更多
关键词 Ti-Al alloys laser ignition molecular dynamics temperature field
原文传递
Stability analysis of a liquid crystal elastomer self-oscillator under a linear temperature field
4
作者 Haiyang WU Jiangfeng LOU +2 位作者 Biao ZHANG Yuntong DAI Kai LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期337-354,共18页
Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ... Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials. 展开更多
关键词 SELF-OSCILLATION stability analysis multi-scale method liquid crystal elastomer linear temperature field
在线阅读 下载PDF
Numerical simulation of melt flow and temperature field during DC casting 2024 aluminium alloy under different casting conditions
5
作者 Jin-chuan Wang Yu-bo Zuo +3 位作者 Qing-feng Zhu Jing Li Rui Wang Xu-dong Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期387-396,共10页
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ... Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone. 展开更多
关键词 aluminium DC casting flow field temperature field numerical simulation
在线阅读 下载PDF
Temperature field prediction of steel-concrete composite decks using TVFEMD-stacking ensemble algorithm
6
作者 Benkun TAN Da WANG +1 位作者 Jialin SHI Lianqi ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第9期732-748,共17页
This research aims to develop an advanced deep learning-based ensemble algorithm,utilizing environmental temperature and solar radiation as feature factors,to conduct hourly temperature field predictions for steel-con... This research aims to develop an advanced deep learning-based ensemble algorithm,utilizing environmental temperature and solar radiation as feature factors,to conduct hourly temperature field predictions for steel-concrete composite decks(SCCDs).The proposed model comprises feature parameter lag selection,two non-stationary time series decomposition methods(empirical mode decomposition(EMD)and time-varying filtering-based empirical mode decomposition(TVFEMD)),and a stacking ensemble prediction model.To validate the proposed model,five machine learning(ML)models(random forest(RF),support vector regression(SVR),multilayer perceptron(MLP),gradient boosting regression(GBR),and extreme gradient boosting(XGBoost))were tested as base learners and evaluations were conducted within independent,mixed,and ensemble frameworks.Finally,predictions are made based on engineering cases.The results indicate that consideration of lag variables and modal decomposition can significantly improve the prediction performance of learners,and the stacking framework,which combines multiple learners,achieves superior prediction results.The proposed method demonstrates a high degree of predictive robustness and can be applied to statistical analysis of the temperature field in SCCDs.Incorporating time lag features helps account for the delayed heat dissipation phenomenon in concrete,while decomposition techniques assist in feature extraction. 展开更多
关键词 Steel-concrete composite deck(SCCD) temperature field Time-varying filtering-based empirical mode decomposition(TVFEMD) Feature selection Machine learning(ML)
原文传递
Investigation on Temperature Field Calibration and Analysis of Wind Tunnel
7
作者 Zhaokun Ren Zhanyuan Ma +3 位作者 Yue Zhang Hongda Xu Yunxiang Wang Hui Xu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期63-79,共17页
For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss compo... For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models. 展开更多
关键词 wind tunnel temperature field numerical simulation fluid heat transfer
在线阅读 下载PDF
Temperature field calculation of rail flash welding
8
作者 Rui Xu Min Zhang +6 位作者 Zhenkun Gao Guo Zhao Wei Ding Shouming Wang Peng Zhang Xiang Liu Jingjing Li 《High-Speed Railway》 2024年第2期116-121,共6页
The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,t... The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production. 展开更多
关键词 Flash welding temperature field Joint strength Software calculation
在线阅读 下载PDF
NUMERICAL SIMULATIONS OF TEMPERATURE FIELD IN DIRECT METAL LASER SINTERING PROCESS 被引量:6
9
作者 顾冬冬 沈以赴 +2 位作者 刘满仓 潘琰峰 胥橙庭 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期225-233,共9页
A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radia... A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radiation, and convection. A formula for the calculation of the heat conductivity of a sintering system containing solid phase, liquid phase, and gas phase is given. Due to the continuous movement of the laser beam, a local coordinate system centered on the laser beam is used to simplify the analytical calculation. Assuming that it is approximately a Gaussian laser beam, the heat conduction equation is resolved based on the assumption of the thermal insulating boundary conditions and the fixed thermal physical parameters. The FORTRAN language is employed to compile the program to simulate the temperature field in the direct copper powder sintering process. It shows a good agreement with the preliminary experimental results.[KH3/4D] 展开更多
关键词 direct metal laser sintering (DMLS) mathematical model temperature field numerical simulation
在线阅读 下载PDF
Analysis of Static Temperature Field of Vehicle's Solid Rubber Tire 被引量:8
10
作者 郑慕侨 崔玉福 孙逢春 《Journal of Beijing Institute of Technology》 EI CAS 1998年第2期135-140,共6页
Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature... Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT. 展开更多
关键词 static temperature field solid rubber tire FE analysis
在线阅读 下载PDF
Measurement and theoretical analysis of solar temperature field in steel-concrete composite girder 被引量:5
11
作者 陈晓强 刘其伟 朱俊 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期513-517,共5页
The solar temperature field of a large three-span continuous bridge with steel-concrete composite box girder and variable cross-section is measured to verify a calculation method for the temperature field of steel-con... The solar temperature field of a large three-span continuous bridge with steel-concrete composite box girder and variable cross-section is measured to verify a calculation method for the temperature field of steel-concrete composite beams. The test results show that the temperature of an external steel web- plate is higher than that of an internal web-plate due to the difference in solar radiation. Air temperature inside the box matches the average temperature of the whole steel box. Based on actual measurements, a transient thermal analysis with multiple boundary conditions is also carried out by a software program ANSYS. Convective boundary situation and states of solar radiation on steel web plates in different situations are determined in the analysis. The feature of the temperature field is preliminarily achieved through a comparative study between the actual measurement and the finite element analysis. The computed results are in good consistence with the actual measurement results, with the maximum difference within 2 ℃. This indicates that the theoretical calculation method is reliable and it provides a foundation for further research on temperature field distribution in the steel-concrete composite box girder. 展开更多
关键词 steel-concrete composite structure: solar radiation: temperature field EXPERIMENT
在线阅读 下载PDF
Temperature field model in surface grinding: a comparative assessment 被引量:11
12
作者 Min Yang Ming Kong +10 位作者 Changhe Li Yunze Long Yanbin Zhang Shubham Sharma Runze Li Teng Gao Mingzheng Liu Xin Cui Xiaoming Wang Xiao Ma Yuying Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期314-373,共60页
Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increas... Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increase in temperature due to high specific energy,which can lead to surface thermal damage.Therefore,ensuring control over the surface integrity of workpieces during grinding becomes a critical concern.This necessitates the development of temperature field models that consider various parameters,such as workpiece materials,grinding wheels,grinding parameters,cooling methods,and media,to guide industrial production.This study thoroughly analyzes and summarizes grinding temperature field models.First,the theory of the grinding temperature field is investigated,classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source,depending on whether the heat source is uniform and continuous.Through this examination,a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived.Subsequently,various grinding thermal models are summarized,including models for the heat source distribution,energy distribution proportional coefficient,and convective heat transfer coefficient.Through comprehensive research,the most widely recognized,utilized,and accurate model for each category is identified.The application of these grinding thermal models is reviewed,shedding light on the governing laws that dictate the influence of the heat source distribution,heat distribution,and convective heat transfer in the grinding arc zone on the grinding temperature field.Finally,considering the current issues in the field of grinding temperature,potential future research directions are proposed.The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity. 展开更多
关键词 grinding temperature uniform continuous temperature field nonuniform discontinuous temperature field heat source distribution model grinding heat distribution coefficient model convective heat transfer coefficient model
在线阅读 下载PDF
A Quadrilateral Element-based Method for Calculation of Multi-scale Temperature Field
13
作者 孙志刚 周超羡 +1 位作者 高希光 宋迎东 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期529-536,共8页
In the analysis of functionally graded materials (FGMs), the uncoupled approach is used broadly, which is based on homogenized material property and ignores the effect Of local micro-structural interaction. The high... In the analysis of functionally graded materials (FGMs), the uncoupled approach is used broadly, which is based on homogenized material property and ignores the effect Of local micro-structural interaction. The higher-order theory for FGMs (HOTFGM) is a coupled approach that explicitly takes the effect of micro-structural gradation and the local interaction of the spatially variable inclusion phase into account. Based on the HOTFGM, this article presents a quadrilateral element-based method for the calculation of multi-scale temperature field (QTF). In this method, the discrete cells are quadrilateral including rectangular while the surface-averaged quantities are the primary variables which replace the coefficients employed in the temperature function. In contrast with the HOTFGM, this method improves the efficiency, eliminates the restriction of being rectangular cells and expands the solution scale. The presented results illustrate the efficiency of the QTF and its advantages in analyzing FGMs. 展开更多
关键词 functionally graded materials higher-order theory temperature field multi-scale computing quadrilateral cell
原文传递
Effect of Laser Power on the Cladding Temperature Field and the Heat Affected Zone 被引量:26
14
作者 LUO Fang YAO Jian hua +1 位作者 HU Xia xia CHAI Guo-zhong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第1期73-78,共6页
H13 powder is cladded on steel P20 (base) by continuous COe laser, and the influence of technological pa rameters such as the laser power is analyzed. The 3-D model of synchronous powder feeding is built under Gauss... H13 powder is cladded on steel P20 (base) by continuous COe laser, and the influence of technological pa rameters such as the laser power is analyzed. The 3-D model of synchronous powder feeding is built under Gauss heat source. The simulative results in the heat affected zone are compared with the experimental ones, and the average er rors of width and depth are 15% and 4.5%, respectively. It is found that the simulative results provide basic data for investigating of laser cladding further. 展开更多
关键词 laser power laser cladding temperature field heat affected zone
原文传递
Numerical Simulation of Temperature Field and Thermal Stress Field of Work Roll During Hot Strip Rolling 被引量:13
15
作者 LI Chang-sheng YU Hai-liang DENG Guan-yu LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第5期18-21,共4页
Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll... Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling. 展开更多
关键词 hot strip mill ROLL temperature field thermal stress finite element method
在线阅读 下载PDF
STUDY ON TEMPERATURE FIELD INDUCED IN HIGH FREQUENCY INDUCTION HEATING 被引量:19
16
作者 H. Shen Z.Q. Yao Y.J. Shi J. Hu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第3期190-196,共7页
A mathematical model was established for the temperature field developed during high frequency induction heating (HFIH) by Maxwell's equations. It required solving the coupled equations of the electromagnetic and t... A mathematical model was established for the temperature field developed during high frequency induction heating (HFIH) by Maxwell's equations. It required solving the coupled equations of the electromagnetic and temperature fields. The numerical simudation was performed using FEMLAB. The comparison of the calculations using the proposed model with experimental results showed a very good correlation. The effects of the heating parameters in high frequency induction such as the distance between the plate and the coil, the applied current, the frequency, and the turns of the coil on the temperature profiles developed in the plate were also discussed using the established model. 展开更多
关键词 high frequency induction temperature field numerical simudation
在线阅读 下载PDF
Numerical simulation of the temperature fields of stainless steel with different roller parameters during twin-roll strip casting 被引量:9
17
作者 Yuan Fang Zhen-min Wang +4 位作者 Qing-xiang Yang Yun-kun Zhang Li-gang Liu Hong-yan Hu Yue Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第3期304-308,共5页
The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they ... The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they fit close to each other, which indicates this FE model is effective. Based on this model, the effects of roll gap (t) and roll radius (R) on solidification were simulated. The simulated results give the relationship between t or R and the position of the freezing point. The larger the t is and the smaller the R is, the closer the position of the freezing point is to the exit. 展开更多
关键词 twin-roll strip casting temperature field roll gap roll radius numerical simulation
在线阅读 下载PDF
Mathematical models of steady-state temperature fields produced by multi-piped freezing 被引量:8
18
作者 Xiang-dong HU Wang GUO +2 位作者 Luo-yu ZHANG Jin-tai WANG Xue DONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2016年第9期702-723,共22页
The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special construction requirements, such as two-, three-, or four-piped freezing. Based on potential superpos... The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special construction requirements, such as two-, three-, or four-piped freezing. Based on potential superposition theory, this paper gives analytical solutions to steady-state frozen temperature for two, three, and four freezing pipes with different temperatures and arranged at random. Specific solutions are derived for some particular arrangements, such as three freezing pipes in a linear arrangement with equal or unequal spacing, right and isosceles triangle arrangements, four freezing pipes in a linear arrangement with equal spacing, and rhombus and rectangle arrangements. A comparison between the analytical solutions and numerical thermal analysis shows that the analytical solutions are sufficiently precise. As a part of the theory of AGF, the analytical solutions of temperature fields for multi-piped freezing with arbitrary layouts and different temperatures of freezing pipes are approached for the first time. 展开更多
关键词 Artificial ground freezing (AGF) Multi-piped freezing Steady state temperature field Analytical solution Potential function
原文传递
A p-version embedded model for simulation of concrete temperature fields with cooling pipes 被引量:7
19
作者 Sheng Qiang Zhi-qiang Xie Rui Zhong 《Water Science and Engineering》 EI CAS CSCD 2015年第3期248-256,共9页
Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperatu... Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model. 展开更多
关键词 Concrete temperature field Cooling pipe Embedded model P-VERSION Numerical simulation
在线阅读 下载PDF
THE COUPLED FEM ANALYSIS OF THE TRANSIENT TEMPERATURE FIELD DURING INERTIA FRICTION WELDING OF GH4169 ALLOY 被引量:8
20
作者 L.W. Zhang J.B. Pei +4 位作者 Q.Z. Zhang C.D. Liu W.H. Zhu S. Qu J.H. Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第4期301-306,共6页
The inertia friction welding process is a non-linear process because of the interaction between the temperature field and the material properties as well as the friction force. A thermo-mechanical coupled finite eleme... The inertia friction welding process is a non-linear process because of the interaction between the temperature field and the material properties as well as the friction force. A thermo-mechanical coupled finite element model is established to simulate the temperature field of this process. The transient temperature distribution during the inertia friction welding process of two similar workpieces of GH4169 alloy is calculated. The region of the circular cross-section of the workpiece is divided into a number of four-nodded isoparametric elements. In this model, the temperature dependent thermal properties, time dependent heat inputs, contact condition of welding interface, and deformation of the flash were considered. At the same time, the convection and radiation heat losses at the surface of the workpieces were also considered. A temperature data acquisition system was developed. The temperature at some position near the welding interface was measured using this system. The calculated temperature agrees well with the experimental data. The deformation of the flash and the factor affecting the temperature distribution at the welding interface are also discussed. 展开更多
关键词 inertia friction welding temperature field numerical simulation finite element method
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部