In existing studies, most slope stability analyses concentrate on conditions with constant temperature, assuming the slope is intact, and employ the Mohr-Coulomb (M-C) failure criterion for saturated soil to character...In existing studies, most slope stability analyses concentrate on conditions with constant temperature, assuming the slope is intact, and employ the Mohr-Coulomb (M-C) failure criterion for saturated soil to characterize the strength of the backfill. However, the actual working temperature of slopes varies, and natural phenomena such as rainfall and groundwater infiltration commonly result in unsaturated soil conditions, with cracks typically present in cohesive slopes. This study introduces a novel approach for assessing the stability of unsaturated soil stepped slopes under varying temperatures, incorporating the effects of open and vertical cracks. Utilizing the kinematic approach and gravity increase method, we developed a three-dimensional (3D) rotational wedge failure mechanism to simulate slope collapse, enhancing the traditional two-dimensional analyses. We integrated temperature-dependent functions and nonlinear shear strength equations to evaluate the impact of temperature on four typical unsaturated soil types. A particle swarm optimization algorithm was employed to calculate the safety factor, ensuring our method’s accuracy by comparing it with existing studies. The results indicate that considering 3D effects yields a higher safety factor, while cracks reduce slope stability. Each unsaturated soil exhibits a distinctive temperature response curve, highlighting the importance of understanding soil types in the design phase.展开更多
Diamond is a promising semiconductor material for future space exploration,owing to its unique atomic and electronic structures.However,diamond materials and related devices still suffer from irradiation damage under ...Diamond is a promising semiconductor material for future space exploration,owing to its unique atomic and electronic structures.However,diamond materials and related devices still suffer from irradiation damage under space irradiation involving high-energy irradiating particles.The study of the generation and evolution of point defects can help understand the irradiation damage mechanisms in diamond.This study systematically investigated the defect dynamics of diamond in 162 crystallographic directions uniformly selected on a spherical surface using molecular dynamics simulations,with primary knock-on atom(PKA)energies up to 20 keV,and temperatures ranging from 300 K to 1800 K.The results reveal that the displacement threshold energy of diamond changes periodically with crystallographic directions,which is related to the shape of potential energy surface along that direction.Additionally,the number of residual defects correlates positively with PKA energy.However,temperature has dual competing effects:while it enhances the probability of atomic displacement,it simultaneously suppresses the probability of defect formation by accelerating defect recombination.The calculation of sparse radial distribution function indicates that the defect distribution shows a certain degree of similarity in the short-range region across different PKA energies.As the PKA energy increases,defect clusters tend to become larger in size and more numerous in quantity.This study systematically investigates the anisotropy of displacement threshold energy and elucidates the relationship between various irradiation conditions and the final states of irradiation-induced defects.展开更多
The reduced-activation ferritic/martensitic(RAFM)steel CLF-1 has been designed as a candidate structural material for nuclear fusion energy reactors.For engineering mechanical design,the effects of temperature on the ...The reduced-activation ferritic/martensitic(RAFM)steel CLF-1 has been designed as a candidate structural material for nuclear fusion energy reactors.For engineering mechanical design,the effects of temperature on the strain distribution of CLF-1 steel during uniaxial tensile tests were explored within the temperature range from room temperature to 650°C using uniaxial tensile tests combined with in situ digital image correlation analysis.Strain-concentrated regions alternately distributed±45°along the tensile direction could be attributed to the shear stress having the maximum value at±45°along the tensile direction and the coordinated deformation of the microstructure.The total strain distribution changed from a normal distribution to a lognormal distribution with increasing deformation owing to the competition between the elastic and plastic strains at all test temperatures.Strain localization has a strong relationship with temperature at the same engineering strain because of the temperature effects on dynamic strain aging(DSA).The stronger the DSA effect,the stronger the strain localization.With increasing temperature,the stronger the strain localization at the same strain,the weaker the plasticity,that is,DSA-induced embrittlement,and the slower the strength decline,that is,DSA-induced hardening.展开更多
Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa...Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa,app decreases with φ, while pre-exponential factor A remains nearly unchanged,which conforms well the prediction from Butler-Volmer equation. In contrast, with φ nega-tive shifts from the onset potential for HER to the potential of zero charge (PZC≈-0.4 V), both Ea,app and A for HER increase (e.g., Ea,app increases from 24 kJ/mol to 32 kJ/mol). The increase in Ea,app and A with negative shift in φ from -0.25 V to PZC is explained by the increases of both internal energy change and entropy change from reactants to the transition states, which is correlated with the change in the hydrogen bond network during HER. The positive entropy effects overcompensate the adverse effect from the increase in the activation energy, which leads to a net increase in HER current with the activation energy negative shift from the onset potential of HER to PZC. It is pointed out that entropy change may contribute greatly to the kinetics for electrode reaction which involves the transfer of electron and proton, such as HER.展开更多
The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current di...The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current displays a clear increase with reaction overpotential (η) and temperature from 278-333 K. In 0.1 mol/L HClO4 the Tafel slopes are found to increases slightly with temperature from 118 mV/dec to 146 mV/dec, while in 0.1 mol/L KOH it is ca. 153±15 mV/dec without clear temperature-dependent trend. The apparent activation energy (Ea) for HER at equilibrium potential is ca. 48 and 34 kJ/mol in 0.1 mol/L HC104 and 0.1 mol/L KOH, respectively. In acid solution, Ea decreases with increase in η, from Ea-37 kJ/mol (η=0.2 V) to 30 kJ/mol (η=0.35 V). In contrast, in 0.1 mol/L KOH, Ea does not show obvious change with U. The pre-exponential factor (A) in 0.1 mol/L HC104 is ca. 1 order higher than that in 0.1 mol/L KOH. Toward more negative potential, in 0.1 mol/L HC104 A changes little with potential, while in 0.1 mol/L KOH it displays a monotonic increase with U. The change trends of the potential-dependent kinetic parameters for HER at Au electrode in 0.1 mol/L HClO4 and that in 0.1 mol/L KOH are discussed.展开更多
Nitrogen loss without organic removal in biofilter was observed and its possible reason was explained. A lower hydraulic loading could improve aerobic denitrification rate. Aerobic denitrification was seriously affect...Nitrogen loss without organic removal in biofilter was observed and its possible reason was explained. A lower hydraulic loading could improve aerobic denitrification rate. Aerobic denitrification was seriously affected by low temperature(below 10℃). However, nitrification rate remained high when the temperature dropped from 15℃ to 5℃. It seemed the autotrophic biofilm in BAF could alleviate the adverse effect of low temperature.展开更多
Many studies have indicated that structural strain will be significantly influenced by temperature variations,and a good understanding of the effect of temperature on structural strain is essential.A structural health...Many studies have indicated that structural strain will be significantly influenced by temperature variations,and a good understanding of the effect of temperature on structural strain is essential.A structural health monitoring system has been installed in a typical Tibetan timber building to measure the structural strains and ambient temperature since 2012.This paper presents the correlation between temperature and strain data from the monitored structure.A method combining singular spectrum analysis and polynomial regression is proposed for modeling the temperature induced strains in the structure.Singular spectrum analysis is applied to smooth the temperature data,and the correlation between the resulting temperature time series and the measured strains is obtained by polynomial regression.Parameters of the singular spectrum analysis and the regression model are selected to have the least regression error.Results show that the proposed method has both good reproduction and prediction capabilities for temperature induced strains,and that the method is accurate and effective for eliminating the effect of temperature from the measured strain.A standardized Novelty Index based on the residual strain is also used for the condition assessment of the structure.展开更多
Initial oxidation behavior of NiCoCrAlY coating prepared by arc-ion plating has been studied in air at 900, 1000 and 1100 ℃. The results showed that phase transformation from transient θ-Al_(2)O_(3) to α-Al_(2)O_(3...Initial oxidation behavior of NiCoCrAlY coating prepared by arc-ion plating has been studied in air at 900, 1000 and 1100 ℃. The results showed that phase transformation from transient θ-Al_(2)O_(3) to α-Al_(2)O_(3) was highly related to the temperature and oxidation time. The oxide scale in the initial stage was mainly composed of θ-Al_(2)O_(3) at 900 ℃. Instead, more amount of α-Al_(2)O_(3) emerged out with increasing oxidation temperature. The elemental distribution after oxidation confirmed that faster chromium diffusion to the oxide scale played an important role in the speedy transformation from θ-Al_(2)O_(3) to α-Al_(2)O_(3). Y segregation at scale/coating interface resulted in less cavity formation and hence improved the oxide scale adherence.展开更多
Seasonal variation of stable isotopes in precipitation of Kathmandu Valley on the southem slope of Himalaya was carried out to understand the controlling mechanism of amount and temperature effect on the basis of one ...Seasonal variation of stable isotopes in precipitation of Kathmandu Valley on the southem slope of Himalaya was carried out to understand the controlling mechanism of amount and temperature effect on the basis of one year stable isotope data from 2010 to 2011. Highly depleted isotope values in major rainy period are obtained just after the onset of precipitation in summer, which ac- counts for "amount effect" due to saturation isotopic compositions in high moisture condition, whereas, the higher values in winter are indicative to regional vapors (temperature effect) recycling of various sources. An abrupt depletion of isotope values in mid- June, indicates the onset date of monsoon precipitation, by the replacement of winter air mass with southem monsoon. Thus, pre- cipitation isotopes are a tool revealing the onset date of summer monsoon and temporal features of variability, in local and regional monsoons precipitations. A comparison of long term monthly values of 5180, temperature, and precipitation with GNIP 6180 data shows the temporal variations of stable isotopes are mostly controlled by amount and temperature effects. During summer mon- soon, the amount effects are stronger for high values of precipitation (R=0.7) and altitude effect appears for low moisture in late rainy season, thus from December to June (winter to pre-monsoon) the controlling features of isotopes remains under the temper- ature effect. A temporal rate of temperature effect is derived as 0.04%0 per year which indicates a dry signal of atmospheric condition and a temperature relation 5180=(0.371±0.08)T+(0.156±0.05) is obtained from this analysis. The meteoric water lines of Kathmandu before and after monsoon onset of 2011, are found as 5D=(4.36±0.3)5180+(15.66±1.2) and 5D=(6.91±0.2)S180-(7.92±2.26) from lab samples result, and 5D=9.25180+11.725 and 5D=8.535180+16.65 from GNIP data, which lacks the consistency both for slopes and intercepts values for the study period. The mean lapse rate values of δ18O and δD from GNIP data are obtained as -0.002‰/m and -0.015 ‰/m, which indicate the altitudinal effects in regional precipitation of the southern slope of Himalayas. This study estimates new stable isotopes data in recent precipitation using simple methodology which can be important for regional precipitation monitoring systems, environmental change and paleo-climatic studies.展开更多
On the condition of electric-LO phonon strong coupling in a parabolic quantum dot,we obtain theeigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method ofPekar ty...On the condition of electric-LO phonon strong coupling in a parabolic quantum dot,we obtain theeigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method ofPekar type.This system in a quantum dot may be employed as a two-level quantum system-qubit.When the electronis in the superposition state of the ground state and the first-excited state,we obtain the time evolution of the electrondensity.The relations of the probability density of electron on the temperature and the electron-LO-phonon couplingconstant and the relations of the period of oscillation on the temperature,the electron-LO-phonon coupling constant,the Coulomb binding parameter and the confinement length are derived.The results show that the probability densityof electron oscillates with a period when the electron is in the superposition state of the ground and the first-excitedstate,and show that there are different laws that the probability density of electron and the period of oscillation changewith the temperature and the electron-LO-phonon coupling constant when the temperature is lower or higher.Andit is obtained that the period of oscillation decreases with increasing the Coulomb bound potential and increases withincreasing the confinement length not only at lower temperatures but also at higher temperatures.展开更多
Perfluorooctanoic acid(PFOA)is recalcitrant to degrade and mineralize.Here,the effect of temperature on the photolytic decomposition of PFOA was investigated.The decomposition of PFOA was enhanced from 34% to 99% in...Perfluorooctanoic acid(PFOA)is recalcitrant to degrade and mineralize.Here,the effect of temperature on the photolytic decomposition of PFOA was investigated.The decomposition of PFOA was enhanced from 34% to 99% in 60 min of exposure when the temperature was increased from 25 to 85℃ under UV light(201–600 nm).The limited degree of decomposition at 25℃ was due to low quantum yield,which was increased by a factor of 12 at 85℃.Under the imposed conditions,the defluorination ratio increased from 8% at 25℃ to 50% at85℃ in 60 min.Production of perfluorinated carboxylic acids(PFCAs,C7–C5),PFCAs(C4–C3)and TFA(trifluoroacetic acid,C2)accelerated and attained a maximum within 30 to 90 min at 85℃.However,these reactions did not occur at 25℃ despite extended irradiation to180 min.PFOA was decomposed in a step-wise process by surrendering one CF2unit.In each cyclical process,increased temperature enhanced the quantum yields of irradiation and reactions between water molecules and intermediates radicals.The energy consumption for removing eachμmol of PFOA was reduced from 82.5 k J at 25℃ to 10.9 k J at 85℃ using photolysis.Photolysis coupled with heat achieved high rates of PFOA degradation and defluorination.展开更多
Employing variational method of Pekar type(VMPT), this paper investigates the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled polaron in the Cs I quantum pseudodot(...Employing variational method of Pekar type(VMPT), this paper investigates the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled polaron in the Cs I quantum pseudodot(QPD)with electric field. The temperature effects on the strong-coupling polaron in electric field are calculated by using the quantum statistical theory(QST). The results from the present investigation show that the FESE, excitation energy and transition frequency increase(decrease) firstly and then at lower(higher) temperature regions. They are decreasing functions of the electric field strength.展开更多
High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temper...High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temperature, conventional triaxial compression tests at different levels of confining stress were carried out at 4 different temperatures from 20℃ to 120℃. The obtained results show high confining pressures weaken the thermal effects on rock mechanical characteristics while higher temperatures enhance the effect of confining pressure.At higher levels of confining stress the thermal effects on the rock strength characteristics decrease. The higher the temperature, the larger is the effect of confining pressure on the mechanical characteristics of the slate. Increase of temperature leads to a decrease of the peak strength but increases the deformability and ductility of the slate, the thermo effect on the peak strength and Poisson's ratio is larger than on the elastic modulus. Higher temperatures reduce the shear strength of slate, the decrease is mainly caused by a decrease of the cohesion. In general, the slate samples fail in shear failure.展开更多
The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of th...The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots展开更多
The effects of temperature on corrosion and the electrochemical behavior of Ni82.3Cr7Fe3Si4.5B3.2 glassy alloy in HC1,H2SO4,and H3PO4 acids were studied using AC and DC techniques.Impedance data reveal that the suscep...The effects of temperature on corrosion and the electrochemical behavior of Ni82.3Cr7Fe3Si4.5B3.2 glassy alloy in HC1,H2SO4,and H3PO4 acids were studied using AC and DC techniques.Impedance data reveal that the susceptibility to localized corrosion increases with increasing temperature.Potentiodynamic polarization curves reveal that the bulk glassy alloy is spontaneously passivated at all the investigated temperature in H2SO4 and H3PO4 solutions.A localized corrosion effect in HCl solution is clearly observed.The apparent activation energies in the regions of Tafel,active,and passive,as well as the enthalpies and entropies of the dissolution process were determined and discussed.The high apparent activation energy(Ea) value for H3PO4 solution in Tafel region is explained by the low aggressivity of PO4^3- ions.展开更多
The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstruc...The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect.展开更多
Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the mole...Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the molecular level by means of present experimental techniques,a universal description of both chain conformation and dynamics with respect to continuous volume extensional flow(CVEF)is still absent.Taking into account the temperature effect,we performed dissipative particle dynamics(DPD)simulations with the particles corresponding to the repeat units of polymers over a wide temperature range and analyzed the correlation with the conformational properties of ultra-high molecular weight polyethylene/polypropylene(UHMWPE/PP)blend in response to the CVEF.With time evolution,the polymer chains become highly oriented parallel to the flow direction instead of the initial random coiling and self-aggregation.It is found that a high temperature is necessary for more substantial compactness to take place than low temperature.The low-k plateau and low-k peak in structure factor S(k)curves suggest a low degree of conformational diversity and a high degree of chain stretching.It is also concluded that the intra-molecular C-C bond interaction is the main driving force for the dynamics process of the chain conformations undergoing CVEF,where the motion of the alkyl chains is seriously restricted owing to the increase in bond interaction potential,resulting in a reduction of the difference in diffusion rates among alkyl chains.展开更多
The quartz crystal microbalance(QCM) is an important tool that can sense nanogram changes in mass. The hybrid temperature effect on a QCM resonator in aqueous solutions leads to unconvincing detection results. Contr...The quartz crystal microbalance(QCM) is an important tool that can sense nanogram changes in mass. The hybrid temperature effect on a QCM resonator in aqueous solutions leads to unconvincing detection results. Control of the temperature effect is one of the keys when using the QCM for high precision measurements. Based on the Sauerbrey's and Kanazawa's theories, we proposed a method for enhancing the accuracy of the QCM measurement, which takes into account not only the thermal variations of viscosity and density but also the thermal behavior of the QCM resonator. We presented an improved Sauerbrey equation that can be used to effectively compensate the drift of the QCM resonator. These results will play a significant role when applying the QCM at the room temperature.展开更多
In a biased dissipative photovoltaic-photorefractive system, this paper investigates the temperature effect on the evolution and the self-deflection of the dissipative holographic screening-photovoltaic (DHSP) solit...In a biased dissipative photovoltaic-photorefractive system, this paper investigates the temperature effect on the evolution and the self-deflection of the dissipative holographic screening-photovoltaic (DHSP) solitons. The results reveal that, the evolution and the self-deflection of the bright and dark DHSP solitons are influenced by the system temperature. At a given temperature, for a stable DHSP soliton originally formed in the dissipative system, it attempts to evolve into another DHSP soliton when the temperature change is appropriately small, whereas it will become unstable or break down if the temperature departure is large enough. Moreover, the self-deflection degree of the solitary beam centre increases as temperature rises in some range, while it is decided by the system parameters and is slight under small-signal condition. The system temperature can be adjusted to change the formation and the self-deflection of the solitary beam in order to gain certain optical ends. In a word, the system temperature plays a role for the DHSP solitons in the dissipative system.展开更多
Based on the test results obtained from the single-step test and the incremental-step test at room temperature and 240℃, a probabilistic assessment of temperature effects on the cyclic stress-strum response and the f...Based on the test results obtained from the single-step test and the incremental-step test at room temperature and 240℃, a probabilistic assessment of temperature effects on the cyclic stress-strum response and the fatigue life of 1Cr18Ni9Ti steel weld metal is performed. In orber to assess the temperature effect on cyclic stress amplitude where there is a scatter of the material cyclic constitution, a probabilistic assessment approach on the basis of probabilistic modified Ramberg-Osgood relations is introduced.The investigation shows that the cyclic stress amplitude and the scatter of cyclic stress amplitude data are decreased at 240℃. Similarly, from the consideration of the fatigue life scatter a probabilistic assessment of temperature effect on the fatigue life is suggested on the basis of probabilistic Langer S-N relations. The investigation shows that the crack initiation life is increased and the scatter of crack initiation life data is decreased at 240℃.展开更多
基金Project(51378510) supported by the National Natural Science Foundation of China。
文摘In existing studies, most slope stability analyses concentrate on conditions with constant temperature, assuming the slope is intact, and employ the Mohr-Coulomb (M-C) failure criterion for saturated soil to characterize the strength of the backfill. However, the actual working temperature of slopes varies, and natural phenomena such as rainfall and groundwater infiltration commonly result in unsaturated soil conditions, with cracks typically present in cohesive slopes. This study introduces a novel approach for assessing the stability of unsaturated soil stepped slopes under varying temperatures, incorporating the effects of open and vertical cracks. Utilizing the kinematic approach and gravity increase method, we developed a three-dimensional (3D) rotational wedge failure mechanism to simulate slope collapse, enhancing the traditional two-dimensional analyses. We integrated temperature-dependent functions and nonlinear shear strength equations to evaluate the impact of temperature on four typical unsaturated soil types. A particle swarm optimization algorithm was employed to calculate the safety factor, ensuring our method’s accuracy by comparing it with existing studies. The results indicate that considering 3D effects yields a higher safety factor, while cracks reduce slope stability. Each unsaturated soil exhibits a distinctive temperature response curve, highlighting the importance of understanding soil types in the design phase.
基金supported by the Science and Technology Innovation Program of Hunan Province,China(Grant No.2021RC4026)the National Natural Science Foundation of China(Grant Nos.12204538,12104507,and 92365203)Hunan Provincial Science Fund for Distinguished Young Scholars(Grant No.2022JJ10060).
文摘Diamond is a promising semiconductor material for future space exploration,owing to its unique atomic and electronic structures.However,diamond materials and related devices still suffer from irradiation damage under space irradiation involving high-energy irradiating particles.The study of the generation and evolution of point defects can help understand the irradiation damage mechanisms in diamond.This study systematically investigated the defect dynamics of diamond in 162 crystallographic directions uniformly selected on a spherical surface using molecular dynamics simulations,with primary knock-on atom(PKA)energies up to 20 keV,and temperatures ranging from 300 K to 1800 K.The results reveal that the displacement threshold energy of diamond changes periodically with crystallographic directions,which is related to the shape of potential energy surface along that direction.Additionally,the number of residual defects correlates positively with PKA energy.However,temperature has dual competing effects:while it enhances the probability of atomic displacement,it simultaneously suppresses the probability of defect formation by accelerating defect recombination.The calculation of sparse radial distribution function indicates that the defect distribution shows a certain degree of similarity in the short-range region across different PKA energies.As the PKA energy increases,defect clusters tend to become larger in size and more numerous in quantity.This study systematically investigates the anisotropy of displacement threshold energy and elucidates the relationship between various irradiation conditions and the final states of irradiation-induced defects.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131)Anhui Natural Science Foundation of China(No.2108085J05)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP009)。
文摘The reduced-activation ferritic/martensitic(RAFM)steel CLF-1 has been designed as a candidate structural material for nuclear fusion energy reactors.For engineering mechanical design,the effects of temperature on the strain distribution of CLF-1 steel during uniaxial tensile tests were explored within the temperature range from room temperature to 650°C using uniaxial tensile tests combined with in situ digital image correlation analysis.Strain-concentrated regions alternately distributed±45°along the tensile direction could be attributed to the shear stress having the maximum value at±45°along the tensile direction and the coordinated deformation of the microstructure.The total strain distribution changed from a normal distribution to a lognormal distribution with increasing deformation owing to the competition between the elastic and plastic strains at all test temperatures.Strain localization has a strong relationship with temperature at the same engineering strain because of the temperature effects on dynamic strain aging(DSA).The stronger the DSA effect,the stronger the strain localization.With increasing temperature,the stronger the strain localization at the same strain,the weaker the plasticity,that is,DSA-induced embrittlement,and the slower the strength decline,that is,DSA-induced hardening.
基金ACKNOWLEDGMENTS This work was supported by the One Hundred Talents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.21073176), and the National Basic Research Program of China National Science and Technology (No.2010CB923302).
文摘Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa,app decreases with φ, while pre-exponential factor A remains nearly unchanged,which conforms well the prediction from Butler-Volmer equation. In contrast, with φ nega-tive shifts from the onset potential for HER to the potential of zero charge (PZC≈-0.4 V), both Ea,app and A for HER increase (e.g., Ea,app increases from 24 kJ/mol to 32 kJ/mol). The increase in Ea,app and A with negative shift in φ from -0.25 V to PZC is explained by the increases of both internal energy change and entropy change from reactants to the transition states, which is correlated with the change in the hydrogen bond network during HER. The positive entropy effects overcompensate the adverse effect from the increase in the activation energy, which leads to a net increase in HER current with the activation energy negative shift from the onset potential of HER to PZC. It is pointed out that entropy change may contribute greatly to the kinetics for electrode reaction which involves the transfer of electron and proton, such as HER.
基金V, ACKNOWLEDGMENTS This work was supported by one Hundred Talents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.21073176), and 973 Program from the Ministry of Science and Technology of China (No.2010CB923302).
文摘The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current displays a clear increase with reaction overpotential (η) and temperature from 278-333 K. In 0.1 mol/L HClO4 the Tafel slopes are found to increases slightly with temperature from 118 mV/dec to 146 mV/dec, while in 0.1 mol/L KOH it is ca. 153±15 mV/dec without clear temperature-dependent trend. The apparent activation energy (Ea) for HER at equilibrium potential is ca. 48 and 34 kJ/mol in 0.1 mol/L HC104 and 0.1 mol/L KOH, respectively. In acid solution, Ea decreases with increase in η, from Ea-37 kJ/mol (η=0.2 V) to 30 kJ/mol (η=0.35 V). In contrast, in 0.1 mol/L KOH, Ea does not show obvious change with U. The pre-exponential factor (A) in 0.1 mol/L HC104 is ca. 1 order higher than that in 0.1 mol/L KOH. Toward more negative potential, in 0.1 mol/L HC104 A changes little with potential, while in 0.1 mol/L KOH it displays a monotonic increase with U. The change trends of the potential-dependent kinetic parameters for HER at Au electrode in 0.1 mol/L HClO4 and that in 0.1 mol/L KOH are discussed.
文摘Nitrogen loss without organic removal in biofilter was observed and its possible reason was explained. A lower hydraulic loading could improve aerobic denitrification rate. Aerobic denitrification was seriously affected by low temperature(below 10℃). However, nitrification rate remained high when the temperature dropped from 15℃ to 5℃. It seemed the autotrophic biofilm in BAF could alleviate the adverse effect of low temperature.
基金National Natural Science Foundation of China for Excellent Young Scholars under Grant No.51422801National Natural Science Foundation of China under Key Program 51338001Beijing Natural Science Foundation of China under Key Program:8151003
文摘Many studies have indicated that structural strain will be significantly influenced by temperature variations,and a good understanding of the effect of temperature on structural strain is essential.A structural health monitoring system has been installed in a typical Tibetan timber building to measure the structural strains and ambient temperature since 2012.This paper presents the correlation between temperature and strain data from the monitored structure.A method combining singular spectrum analysis and polynomial regression is proposed for modeling the temperature induced strains in the structure.Singular spectrum analysis is applied to smooth the temperature data,and the correlation between the resulting temperature time series and the measured strains is obtained by polynomial regression.Parameters of the singular spectrum analysis and the regression model are selected to have the least regression error.Results show that the proposed method has both good reproduction and prediction capabilities for temperature induced strains,and that the method is accurate and effective for eliminating the effect of temperature from the measured strain.A standardized Novelty Index based on the residual strain is also used for the condition assessment of the structure.
基金sponsored by the R&D Program in Key Fields of Guangdong Province(No.2019B010936001)the National Natural Science Foundation of China(Grant No.51671202)+1 种基金supported by the National Engineering Laboratory for Marine and Ocean Engineering Power System-Laboratory for Ocean Engineering Gas Turbine。
文摘Initial oxidation behavior of NiCoCrAlY coating prepared by arc-ion plating has been studied in air at 900, 1000 and 1100 ℃. The results showed that phase transformation from transient θ-Al_(2)O_(3) to α-Al_(2)O_(3) was highly related to the temperature and oxidation time. The oxide scale in the initial stage was mainly composed of θ-Al_(2)O_(3) at 900 ℃. Instead, more amount of α-Al_(2)O_(3) emerged out with increasing oxidation temperature. The elemental distribution after oxidation confirmed that faster chromium diffusion to the oxide scale played an important role in the speedy transformation from θ-Al_(2)O_(3) to α-Al_(2)O_(3). Y segregation at scale/coating interface resulted in less cavity formation and hence improved the oxide scale adherence.
基金supported by the Ph.D.program of Institute of Tibetan Plateau Research,ITPCAS
文摘Seasonal variation of stable isotopes in precipitation of Kathmandu Valley on the southem slope of Himalaya was carried out to understand the controlling mechanism of amount and temperature effect on the basis of one year stable isotope data from 2010 to 2011. Highly depleted isotope values in major rainy period are obtained just after the onset of precipitation in summer, which ac- counts for "amount effect" due to saturation isotopic compositions in high moisture condition, whereas, the higher values in winter are indicative to regional vapors (temperature effect) recycling of various sources. An abrupt depletion of isotope values in mid- June, indicates the onset date of monsoon precipitation, by the replacement of winter air mass with southem monsoon. Thus, pre- cipitation isotopes are a tool revealing the onset date of summer monsoon and temporal features of variability, in local and regional monsoons precipitations. A comparison of long term monthly values of 5180, temperature, and precipitation with GNIP 6180 data shows the temporal variations of stable isotopes are mostly controlled by amount and temperature effects. During summer mon- soon, the amount effects are stronger for high values of precipitation (R=0.7) and altitude effect appears for low moisture in late rainy season, thus from December to June (winter to pre-monsoon) the controlling features of isotopes remains under the temper- ature effect. A temporal rate of temperature effect is derived as 0.04%0 per year which indicates a dry signal of atmospheric condition and a temperature relation 5180=(0.371±0.08)T+(0.156±0.05) is obtained from this analysis. The meteoric water lines of Kathmandu before and after monsoon onset of 2011, are found as 5D=(4.36±0.3)5180+(15.66±1.2) and 5D=(6.91±0.2)S180-(7.92±2.26) from lab samples result, and 5D=9.25180+11.725 and 5D=8.535180+16.65 from GNIP data, which lacks the consistency both for slopes and intercepts values for the study period. The mean lapse rate values of δ18O and δD from GNIP data are obtained as -0.002‰/m and -0.015 ‰/m, which indicate the altitudinal effects in regional precipitation of the southern slope of Himalayas. This study estimates new stable isotopes data in recent precipitation using simple methodology which can be important for regional precipitation monitoring systems, environmental change and paleo-climatic studies.
基金Supported by National Natural Science Foundation of China under Grant No.10747002Research Funds from Qufu Normal University under Grant No.XJZ200839
文摘On the condition of electric-LO phonon strong coupling in a parabolic quantum dot,we obtain theeigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method ofPekar type.This system in a quantum dot may be employed as a two-level quantum system-qubit.When the electronis in the superposition state of the ground state and the first-excited state,we obtain the time evolution of the electrondensity.The relations of the probability density of electron on the temperature and the electron-LO-phonon couplingconstant and the relations of the period of oscillation on the temperature,the electron-LO-phonon coupling constant,the Coulomb binding parameter and the confinement length are derived.The results show that the probability densityof electron oscillates with a period when the electron is in the superposition state of the ground and the first-excitedstate,and show that there are different laws that the probability density of electron and the period of oscillation changewith the temperature and the electron-LO-phonon coupling constant when the temperature is lower or higher.Andit is obtained that the period of oscillation decreases with increasing the Coulomb bound potential and increases withincreasing the confinement length not only at lower temperatures but also at higher temperatures.
基金supported by the National Basic Research Program(973)of China(No.2010CB933600)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA09030203)+4 种基金the National Natural Science Foundation of China(Nos.2127716141103076)the special fund from the State Key Laboratory of Environmental Aquatic Chemistry(No.10Y10ESPCR)the Youth Innovation Promotion AssociationChinese Academy of Sciences(29QNCX2012005)
文摘Perfluorooctanoic acid(PFOA)is recalcitrant to degrade and mineralize.Here,the effect of temperature on the photolytic decomposition of PFOA was investigated.The decomposition of PFOA was enhanced from 34% to 99% in 60 min of exposure when the temperature was increased from 25 to 85℃ under UV light(201–600 nm).The limited degree of decomposition at 25℃ was due to low quantum yield,which was increased by a factor of 12 at 85℃.Under the imposed conditions,the defluorination ratio increased from 8% at 25℃ to 50% at85℃ in 60 min.Production of perfluorinated carboxylic acids(PFCAs,C7–C5),PFCAs(C4–C3)and TFA(trifluoroacetic acid,C2)accelerated and attained a maximum within 30 to 90 min at 85℃.However,these reactions did not occur at 25℃ despite extended irradiation to180 min.PFOA was decomposed in a step-wise process by surrendering one CF2unit.In each cyclical process,increased temperature enhanced the quantum yields of irradiation and reactions between water molecules and intermediates radicals.The energy consumption for removing eachμmol of PFOA was reduced from 82.5 k J at 25℃ to 10.9 k J at 85℃ using photolysis.Photolysis coupled with heat achieved high rates of PFOA degradation and defluorination.
基金Supported by the National Natural Science Foundation of China under Grant No.11464033
文摘Employing variational method of Pekar type(VMPT), this paper investigates the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled polaron in the Cs I quantum pseudodot(QPD)with electric field. The temperature effects on the strong-coupling polaron in electric field are calculated by using the quantum statistical theory(QST). The results from the present investigation show that the FESE, excitation energy and transition frequency increase(decrease) firstly and then at lower(higher) temperature regions. They are decreasing functions of the electric field strength.
基金supported by National Natural Science Foundation of China(Grant No.41230635)Projects of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2013Z004)+1 种基金The Cultivating programme of middle-aged backbone teachers of Chengdu University of Technology(Grant No.JXGG201703)Key Projects of Education Department of Sichuan Province(Grant No.16ZA0095)
文摘High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temperature, conventional triaxial compression tests at different levels of confining stress were carried out at 4 different temperatures from 20℃ to 120℃. The obtained results show high confining pressures weaken the thermal effects on rock mechanical characteristics while higher temperatures enhance the effect of confining pressure.At higher levels of confining stress the thermal effects on the rock strength characteristics decrease. The higher the temperature, the larger is the effect of confining pressure on the mechanical characteristics of the slate. Increase of temperature leads to a decrease of the peak strength but increases the deformability and ductility of the slate, the thermo effect on the peak strength and Poisson's ratio is larger than on the elastic modulus. Higher temperatures reduce the shear strength of slate, the decrease is mainly caused by a decrease of the cohesion. In general, the slate samples fail in shear failure.
文摘The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots
基金supported by the Kink Abdulaziz City of Science and Technology (KACST) (No.GSP–14–105)
文摘The effects of temperature on corrosion and the electrochemical behavior of Ni82.3Cr7Fe3Si4.5B3.2 glassy alloy in HC1,H2SO4,and H3PO4 acids were studied using AC and DC techniques.Impedance data reveal that the susceptibility to localized corrosion increases with increasing temperature.Potentiodynamic polarization curves reveal that the bulk glassy alloy is spontaneously passivated at all the investigated temperature in H2SO4 and H3PO4 solutions.A localized corrosion effect in HCl solution is clearly observed.The apparent activation energies in the regions of Tafel,active,and passive,as well as the enthalpies and entropies of the dissolution process were determined and discussed.The high apparent activation energy(Ea) value for H3PO4 solution in Tafel region is explained by the low aggressivity of PO4^3- ions.
文摘The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect.
基金the National Key R&D Program of China(No.2016YFB0302301)the Guangdong YangFan Innovative&Ente preneurial Research TeamProgram(No.2016YT03C077)+1 种基金the Science and Technology Planning Project of Guangzhou(No.201704020008)the Open Foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics(Wuhan University of Technology)(No.TAM202001)。
文摘Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the molecular level by means of present experimental techniques,a universal description of both chain conformation and dynamics with respect to continuous volume extensional flow(CVEF)is still absent.Taking into account the temperature effect,we performed dissipative particle dynamics(DPD)simulations with the particles corresponding to the repeat units of polymers over a wide temperature range and analyzed the correlation with the conformational properties of ultra-high molecular weight polyethylene/polypropylene(UHMWPE/PP)blend in response to the CVEF.With time evolution,the polymer chains become highly oriented parallel to the flow direction instead of the initial random coiling and self-aggregation.It is found that a high temperature is necessary for more substantial compactness to take place than low temperature.The low-k plateau and low-k peak in structure factor S(k)curves suggest a low degree of conformational diversity and a high degree of chain stretching.It is also concluded that the intra-molecular C-C bond interaction is the main driving force for the dynamics process of the chain conformations undergoing CVEF,where the motion of the alkyl chains is seriously restricted owing to the increase in bond interaction potential,resulting in a reduction of the difference in diffusion rates among alkyl chains.
基金supported by the National Natural Science Foundation of China(Grant No.61672094)
文摘The quartz crystal microbalance(QCM) is an important tool that can sense nanogram changes in mass. The hybrid temperature effect on a QCM resonator in aqueous solutions leads to unconvincing detection results. Control of the temperature effect is one of the keys when using the QCM for high precision measurements. Based on the Sauerbrey's and Kanazawa's theories, we proposed a method for enhancing the accuracy of the QCM measurement, which takes into account not only the thermal variations of viscosity and density but also the thermal behavior of the QCM resonator. We presented an improved Sauerbrey equation that can be used to effectively compensate the drift of the QCM resonator. These results will play a significant role when applying the QCM at the room temperature.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574051 and 10174025)
文摘In a biased dissipative photovoltaic-photorefractive system, this paper investigates the temperature effect on the evolution and the self-deflection of the dissipative holographic screening-photovoltaic (DHSP) solitons. The results reveal that, the evolution and the self-deflection of the bright and dark DHSP solitons are influenced by the system temperature. At a given temperature, for a stable DHSP soliton originally formed in the dissipative system, it attempts to evolve into another DHSP soliton when the temperature change is appropriately small, whereas it will become unstable or break down if the temperature departure is large enough. Moreover, the self-deflection degree of the solitary beam centre increases as temperature rises in some range, while it is decided by the system parameters and is slight under small-signal condition. The system temperature can be adjusted to change the formation and the self-deflection of the solitary beam in order to gain certain optical ends. In a word, the system temperature plays a role for the DHSP solitons in the dissipative system.
文摘Based on the test results obtained from the single-step test and the incremental-step test at room temperature and 240℃, a probabilistic assessment of temperature effects on the cyclic stress-strum response and the fatigue life of 1Cr18Ni9Ti steel weld metal is performed. In orber to assess the temperature effect on cyclic stress amplitude where there is a scatter of the material cyclic constitution, a probabilistic assessment approach on the basis of probabilistic modified Ramberg-Osgood relations is introduced.The investigation shows that the cyclic stress amplitude and the scatter of cyclic stress amplitude data are decreased at 240℃. Similarly, from the consideration of the fatigue life scatter a probabilistic assessment of temperature effect on the fatigue life is suggested on the basis of probabilistic Langer S-N relations. The investigation shows that the crack initiation life is increased and the scatter of crack initiation life data is decreased at 240℃.