期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Calculation of dpa rate in graphite box of Tehran Research Reactor(TRR) 被引量:2
1
作者 Mohamad Amin Amirkhani Mohsen Asadi Asadabad +2 位作者 Mostafa Hassanzadeh Seyed Mohammad Mirvakili Ali Mohammadi 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第6期44-56,共13页
Radiation damage is an important factor that must be considered while designing nuclear facilities and nuclear materials. In this study, radiation damage is investigated in graphite, which is used as a neutron reflect... Radiation damage is an important factor that must be considered while designing nuclear facilities and nuclear materials. In this study, radiation damage is investigated in graphite, which is used as a neutron reflector in the Tehran Research Reactor (TRR) core. Radiation damage is shown by displacement per atom (dpa) unit. A cross section of the material was created by using the SPECOMP code. The concentration of impurities present in the non-irradiated graphite was measured by using the ICP-AES method. In the present study the MCNPX code had identified the most sensitive location for radiation damage inside the reactor core. Subsequently, the radiation damage (spectral-averaged dpa values) in the aforementioned location was calculated by using the SPECTER, SRIM Monte Carlo codes, and Norgett, Robinson and Torrens (NRT) model. The results of “Ion Distribution and Quick Calculation of Damage”(QD) method groups had a minor difference with the results of the SPECTER code and NRT model. The maximum radiation damage rate calculated for the graphite present in the TRR core was 1.567 9 10^-8 dpa/s. Finally, hydrogen retention was calculated as a function of the irradiation time. 展开更多
关键词 Radiation damage GRAPHITE SPECTER SRIM MCNPX tehran research reactor
在线阅读 下载PDF
Effective point kinetic parameters calculation in Tehran research reactor using deterministic and probabilistic methods 被引量:1
2
作者 M.Kheradmand Saadi A.Abbaspour 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第12期182-192,共11页
The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their ... The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their dynamic models. These parameters include effective delayed neutron fractions as well as mean generation time.These parameters are adjoint-weighted, and adjoint flux is employed as a weighting function in their evaluation.Adjoint flux calculation is an easy task for most of deterministic codes, but its evaluation is cumbersome for Monte Carlo codes. However, in recent years, some sophisticated techniques have been proposed for Monte Carlo-based point kinetic parameters calculation without any need of adjoint flux. The most straightforward scheme is known as the ‘‘prompt method'' and has been used widely in literature. The main objective of this article is dedicated to point kinetic parameters calculation in Tehran research reactor(TRR) using deterministic as well as probabilistic techniques. WIMS-D5B and CITATION codes have been used in deterministic calculation of forward and adjoint fluxes in the TRR core. On the other hand, the MCNP Monte Carlo code has been employed in the ‘‘prompt method''scheme for effective delayed neutron fraction evaluation.Deterministic results have been cross-checked with probabilistic ones and validated with SAR and experimental data. In comparison with experimental results, the relativedifferences of deterministic as well as probabilistic methods are 7.6 and 3.2%, respectively. These quantities are10.7 and 6.4%, respectively, in comparison with SAR report. 展开更多
关键词 POINT kinetic parameters tehran research reactor ADJOINT flux Prompt METHOD DETERMINISTIC METHOD Probabilistic METHOD
在线阅读 下载PDF
Effects of cooling channel blockage on fuel plate temperature in Tehran Research Reactor
3
作者 TABBAKH Farshid 《Nuclear Science and Techniques》 SCIE CAS CSCD 2009年第3期184-187,共4页
In this study, the variation of the temperature distribution of the fuel plate in Tehran Research Reactor core was studied in case of coolant channels blockage. While the experimental method is not possible, both the ... In this study, the variation of the temperature distribution of the fuel plate in Tehran Research Reactor core was studied in case of coolant channels blockage. While the experimental method is not possible, both the analytical and simulation methods were used to obtain the more reliable data. The results show that one channel blockage will increase the fuel temperature to about 100%, but it does not lead to clad melt down still. With further calculation and simulation it is understood that if the coolant velocity drops to 90% of its nominal value, it may causes the clad melting down. At least two channels with complete blockage even at the positions far from the core center can also melt down the clad. 展开更多
关键词 反应堆 核技术 研究 实验方法
在线阅读 下载PDF
Neutronic design investigation of a liquid injection-based second shutdown system for a typical research reactor using MCNPX 被引量:1
4
作者 Ehsan Boustani Mostafa Hassanzadeh 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第3期51-60,共10页
Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engi... Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engineered safety feature and a part of the reactor protection system(RPS) is a means for rapidly shutting down a nuclear reactor, keeping it in a subcritical state and serving as a backup to the first shutdown system(FSS). In this research, one SSS with two types of optimum chamber designs is proposed that take into account the main current characteristic features of the Tehran research reactor with improvements over earlier designs. They are based on a liquid neutron absorber injection that is preferably different, diverse, and independent from the FSS based on the rod drop mechanism. The major design characteristics of this SSS with two different chambers were investigated using MCNPX 2.6.0 code. The performed calculations showed that the designed SSS is a reliable shutdown system, assuring an appropriate shutdown margin and injection time, with no significant effects on the effective delayed neutron fraction while causing minimal variations to the core structure. Further, the reasonable financial cost and the prolongation of the operation cycle are additional advantages of this design. 展开更多
关键词 tehran research reactor SECOND SHUTDOWN system Nuclear safety Design criteria MCNPX code
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部