期刊文献+
共找到4,604篇文章
< 1 2 231 >
每页显示 20 50 100
Evolutionary Particle Swarm Optimization Algorithm Based on Collective Prediction for Deployment of Base Stations
1
作者 Jiaying Shen Donglin Zhu +5 位作者 Yujia Liu Leyi Wang Jialing Hu Zhaolong Ouyang Changjun Zhou Taiyong Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期345-369,共25页
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I... The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO. 展开更多
关键词 Particle swarm optimization effective coverage area global optimization base station deployment
在线阅读 下载PDF
Effective Hybrid Teaching-learning-based Optimization Algorithm for Balancing Two-sided Assembly Lines with Multiple Constraints 被引量:8
2
作者 TANG Qiuhua LI Zixiang +2 位作者 ZHANG Liping FLOUDAS C A CAO Xiaojun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期1067-1079,共13页
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ... Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS. 展开更多
关键词 two-sided assembly line balancing teaching-learning-based optimization algorithm variable neighborhood search positional constraints zoning constraints synchronism constraints
在线阅读 下载PDF
Buckling Optimization of Curved Grid Stiffeners through the Level Set Based Density Method
3
作者 Zhuo Huang Ye Tian +2 位作者 Yifan Zhang Tielin Shi Qi Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期711-733,共23页
Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid s... Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor. 展开更多
关键词 STIFFENER buckling optimization shape and cross section level set based density
在线阅读 下载PDF
Physics-Based Active Learning for Design Space Exploration and Surrogate Construction for Multiparametric Optimization
4
作者 Sergio Torregrosa Victor Champaney +2 位作者 Amine Ammar Vincent Herbert Francisco Chinesta 《Communications on Applied Mathematics and Computation》 EI 2024年第3期1899-1923,共25页
The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practice... The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied. 展开更多
关键词 Active learning(AL) Artificial intelligence(AI) optimization Physics based
在线阅读 下载PDF
Reliability Based Optimization of Composite Laminates for Frequency Constraint 被引量:3
5
作者 吴浩 燕瑛 刘玉佳 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期320-327,共8页
The reliability based optimization (RBO) issue of composite laminates trader fundamental frequency constraint is studied. Considering the tmcertainties of material properties, the frequency constraint reliability of... The reliability based optimization (RBO) issue of composite laminates trader fundamental frequency constraint is studied. Considering the tmcertainties of material properties, the frequency constraint reliability of the structure is evaluated by the combination of response surface method (RSM) and finite element method. An optimization algorithm is developed based on the mechanism of laminate frequency characteristics, to optimize the laminate in terms of the ply amount and orientation angles. Numerical examples of composite laminates and cylindrical shell illustrate the advantages of the present optimization algorithm on the efficiency and applicability respects. The optimal solutions of RBO are obviously different from the deterministic optimization results, and the necessity of considering material property uncertainties in the composite structural frequency constraint optimization is revealed. 展开更多
关键词 fundamental frequency reliability based optimization (RBO) response surface method (RSM) basic random variable (BRV) failure probability deterministic optimization
在线阅读 下载PDF
Optimization of RDF link traversal based query execution 被引量:2
6
作者 朱艳琴 花岭 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期27-32,共6页
Aiming at the problem that only some types of SPARQL ( simple protocal and resource description framework query language) queries can be answered by using the current resource description framework link traversal ba... Aiming at the problem that only some types of SPARQL ( simple protocal and resource description framework query language) queries can be answered by using the current resource description framework link traversal based query execution (RDF-LTE) approach, this paper discusses how the execution order of the triple pattern affects the query results and cost based on concrete SPARQL queries, and analyzes two properties of the web of linked data, missing backward links and missing contingency solution. Then three heuristic principles for logic query plan optimization, namely, the filtered basic graph pattern (FBGP) principle, the triple pattern chain principle and the seed URIs principle, are proposed. The three principles contribute to decrease the intermediate solutions and increase the types of queries that can be answered. The effectiveness and feasibility of the proposed approach is evaluated. The experimental results show that more query results can be returned with less cost, thus enabling users to develop the full potential of the web of linked data. 展开更多
关键词 web of linked data resource description framework link traversal based query execution (RDF-LTE) SPARQL query query optimization
在线阅读 下载PDF
APPLICATION OF SURROGATE BASED PARTICLE SWARM OPTIMIZATION TO THE RELIABILITY-BASED ROBUST DESIGN OF COMPOSITE PRESSURE VESSELS 被引量:2
7
作者 Jianqiao Chen Yuanfu Tang Xiaoxu Huang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2013年第5期480-490,共11页
A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composit... A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composite pressure vessels. The algorithm and efficiency of SBPSO are displayed through numerical examples. A model for filament-wound composite pressure vessels with metallic liner is then studied by netting analysis and its responses are analyzed by using Finite element method (performed by software ANSYS). An optimization problem for maximizing the performance factor is formulated by choosing the winding orientation of the helical plies in the cylindrical portion, the thickness of metal liner and the drop off region size as the design variables. Strength constraints for composite layers and the metal liner are constructed by using Tsai-Wu failure criterion and Mises failure criterion respectively. Numerical examples show that the method proposed can effectively solve the RBRD problem, and the optimal results of the proposed model can satisfy certain reliability requirement and have the robustness to the fluctuation of design variables. 展开更多
关键词 structural optimization reliability based robust design composite pressure vessel surrogate based particle swarm optimization sequential algorithm
原文传递
Optimization of the Dressing Parameters in Cylindrical Grinding Based on a Generalized Utility Function 被引量:2
8
作者 ALEKSANDROVA Irina 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期63-73,共11页
The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on... The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type AC32 and AC80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility fimction has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing parameters. 展开更多
关键词 dressing conditions cylindrical grinding diamond roller dresser generalized utility function based optimization
在线阅读 下载PDF
Reliable Space Pursuing for Reliability-based Design Optimization with Black-box Performance Functions 被引量:2
9
作者 SHAN Songqing WANG G Gary 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期27-35,共9页
Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop pr... Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method. 展开更多
关键词 Reliability based design optimization black-box function reliable design space
在线阅读 下载PDF
Reliability Based Design Optimization of Aero-Engine Spindle Ball Bearings 被引量:2
10
作者 杨静 孟德彪 +2 位作者 张小玲 汪忠来 许焕卫 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期853-855,共3页
Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliabilit... Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliability based design optimization method to solve the structure design problem of aero-engine spindle ball bearings.Compared with the optimization design method, the value of equivalent dynamic load using reliability optimization design method was the least by MATLAB simulation. Also the design solutions show that the optimized structure possesses higher reliability than the original solution. 展开更多
关键词 aero-engine spindle ball bearing complex stresses reliability based design optimization structure design
在线阅读 下载PDF
Optimizing Feedforward Neural Networks Using Biogeography Based Optimization for E-Mail Spam Identification 被引量:2
11
作者 Ali Rodan Hossam Faris Ja’far Alqatawna 《International Journal of Communications, Network and System Sciences》 2016年第1期19-28,共10页
Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In litera... Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In literature, researchers and practitioners proposed numerous approaches for automatic e-mail spam detection. Learning-based filtering is one of the important approaches used for spam detection where a filter needs to be trained to extract the knowledge that can be used to detect the spam. In this context, Artificial Neural Networks is a widely used machine learning based filter. In this paper, we propose the use of a common type of Feedforward Neural Network called Multi-Layer Perceptron (MLP) for the purpose of e-mail spam identification, where the weights of this network model are found using a new nature-inspired metaheuristic algorithm called Biogeography Based Optimization (BBO). Experiments and results based on two different spam datasets show that the developed MLP model trained by BBO gets high generalization performance compared to other optimization methods used in the literature for e-mail spam detection. 展开更多
关键词 SPAM BBO Multilayer Perceptron optimization Biogeography based optimization
在线阅读 下载PDF
Multi-objective optimization based optimal setting control for industrial double-stream alumina digestion process 被引量:1
12
作者 WANG Xiao-li LU Mei-yu +1 位作者 WEI Si-mi XIE Yong-fang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期173-185,共13页
The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previ... The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption. 展开更多
关键词 double-stream digestion process optimal setting control multi-objective optimization state transition algorithm rule based decision making
在线阅读 下载PDF
Adaptive optimization methodology based on Kriging modeling and a trust region method 被引量:14
13
作者 Chunna LI Qifeng PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期281-295,共15页
Surrogate-Based Optimization(SBO) is becoming increasingly popular since it can remarkably reduce the computational cost for design optimizations based on high-fidelity and expensive numerical analyses. However, for c... Surrogate-Based Optimization(SBO) is becoming increasingly popular since it can remarkably reduce the computational cost for design optimizations based on high-fidelity and expensive numerical analyses. However, for complicated optimization problems with a large design space, many design variables, and strong nonlinearity, SBO converges slowly and shows imperfection in local exploitation. This paper proposes a trust region method within the framework of an SBO process based on the Kriging model. In each refinement cycle, new samples are selected by a certain design of experiment method within a variable design space, which is sequentially updated by the trust region method. A multi-dimensional trust-region radius is proposed to improve the adaptability of the developed methodology. Further, the scale factor and the limit factor of the trust region are studied to evaluate their effects on the optimization process. Thereafter, different SBO methods using error-based exploration, prediction-based exploitation, refinement based on the expected improvement function, a hybrid refinement strategy, and the developed trust-regionbased refinement are utilized in four analytical tests. Further, the developed optimization methodology is employed in the drag minimization of an RAE2822 airfoil. Results indicate that it has better robustness and local exploitation capability in comparison with those of other SBO 展开更多
关键词 AIRFOIL Design optimization KRIGING model Surrogate-based optimization TRUST-REGION method
原文传递
Metamodel-based Global Optimization Using Fuzzy Clustering for Design Space Reduction 被引量:14
14
作者 LI Yulin LIU Li +1 位作者 LONG Teng DONG Weili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期928-939,共12页
High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization metho... High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization methods must be developed to relieve the computational burden.A new metamodel-based global optimization method using fuzzy clustering for design space reduction(MGO-FCR) is presented.The uniformly distributed initial sample points are generated by Latin hypercube design to construct the radial basis function metamodel,whose accuracy is improved with increasing number of sample points gradually.Fuzzy c-mean method and Gath-Geva clustering method are applied to divide the design space into several small interesting cluster spaces for low and high dimensional problems respectively.Modeling efficiency and accuracy are directly related to the design space,so unconcerned spaces are eliminated by the proposed reduction principle and two pseudo reduction algorithms.The reduction principle is developed to determine whether the current design space should be reduced and which space is eliminated.The first pseudo reduction algorithm improves the speed of clustering,while the second pseudo reduction algorithm ensures the design space to be reduced.Through several numerical benchmark functions,comparative studies with adaptive response surface method,approximated unimodal region elimination method and mode-pursuing sampling are carried out.The optimization results reveal that this method captures the real global optimum for all the numerical benchmark functions.And the number of function evaluations show that the efficiency of this method is favorable especially for high dimensional problems.Based on this global design optimization method,a design optimization of a lifting surface in high speed flow is carried out and this method saves about 10 h compared with genetic algorithms.This method possesses favorable performance on efficiency,robustness and capability of global convergence and gives a new optimization strategy for engineering design optimization problems involving expensive black box models. 展开更多
关键词 global optimization metamodel-based optimization reduction of design space fuzzy clustering
在线阅读 下载PDF
A Gradient-Based Optimization Method for the Design of Layered Phononic Band-Gap Materials 被引量:8
15
作者 Yu Huang Shutian Liu Jian Zhao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第4期429-443,共15页
Phononic materials with specific band-gap characteristics at desired frequency ranges are in great demand for vibration and noise isolation, elastic wave filters, and acoustic devices. The attenuation coefficient curv... Phononic materials with specific band-gap characteristics at desired frequency ranges are in great demand for vibration and noise isolation, elastic wave filters, and acoustic devices. The attenuation coefficient curve depicts both the frequency range of band gap and the attenuation of elastic wave, where the frequency ranges corresponding to the none-zero attenuation coefficients are band gaps. Therefore, the band-gap characteristics can be achieved through maximizing the attenuation coefficient at the corresponding frequency or within the corresponding frequency range. Because the attenuation coefficient curve is not smooth in the frequency domain, the gradient-based optimization methods cannot be directly used in the design optimization of phononic band-gap materials to achieve the maximum attenuation within the desired frequency range. To overcome this difficulty, the objective of maximizing the attenuation coefficient is transformed into maximizing its Cosine, and in this way, the objective function is smoothed and becomes differentiable. Based on this objective function, a novel gradient-based optimization approach is proposed to open the band gap at a prescribed frequency range and to further maximize the attenuation efficiency of the elastic wave at a specific frequency or within a prescribed frequency range. Numerical results demonstrate the effectiveness of the proposed gradient-based optimization method for enhancing the wave attenuation properties. 展开更多
关键词 optimization band gap gradient-based optimization two-step optimization approach
原文传递
Finding Symbolic and All Numerical Solutions for Design Optimization Based on Monotonicity Analysis and Solving Polynomial Systems 被引量:1
16
作者 Chen Yong Li Bailin School of Mechanical Engineering , Southwest Jiaotong University, Chengdu 610031, China 《Journal of Modern Transportation》 1996年第1期16-23,共8页
A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equ... A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equivalent to the subproblem of the design optimization is taken as the symbolic (analytical) expression of the optimum solution for the symbolic optimization, i.e. the problem with symbolic coefficients. A method based on substituting and eliminating for determining Groebner Bases is also proposed, and method for finding all numerical optimum solutions is discussed. Finally an example is given, demonstrating the strategy and efficiency of the method. 展开更多
关键词 design optimization symbolic optimum solution monotonicity analysis Groebner bases homotopy continuation method
在线阅读 下载PDF
Improvement of Cardiac Function by Dry Weight Optimization Based on Interdialysis Inferior Vena Caval Diameter(2) 被引量:2
17
作者 Shixue Hirayama Yasuhiro Ando +1 位作者 Yuji Sud Yasushi Asano 《中国血液净化》 2002年第12期1-3,共3页
关键词 CTR DBP SBP EF Improvement of Cardiac Function by Dry Weight optimization based on Interdialysis Inferior Vena Caval Diameter
暂未订购
Phase-Based Optical Flow Method with Optimized Parameter Settings for Enhancing Displacement Measurement Adaptability
18
作者 Zhaoxin Peng Menglian Liu +2 位作者 Zhiliang Wang Wei Liu Xian Wang 《Open Journal of Applied Sciences》 2024年第5期1165-1184,共20页
To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizi... To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring. 展开更多
关键词 Displacement Measurement Phase-based Optical Flow optimized Parameter Setting
在线阅读 下载PDF
Sequential RBF Surrogate-based Efficient Optimization Method for Engineering Design Problems with Expensive Black-Box Functions 被引量:6
19
作者 PENG Lei LIU Li +1 位作者 LONG Teng GUO Xiaosong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1099-1111,共13页
As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully ... As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization problems. However, due to the low efficiency and poor flexibility, static surrogate-based optimization methods are difficult to efficiently solve practical engineering cases. At the aim of enhancing efficiency, a novel surrogate-based efficient optimization method is developed by using sequential radial basis function(SEO-SRBF). Moreover, augmented Lagrangian multiplier method is adopted to solve the problems involving expensive constraints. In order to study the performance of SEO-SRBF, several numerical benchmark functions and engineering problems are solved by SEO-SRBF and other well-known surrogate-based optimization methods including EGO, MPS, and IARSM. The optimal solutions, number of function evaluations, and algorithm execution time are recorded for comparison. The comparison results demonstrate that SEO-SRBF shows satisfactory performance in both optimization efficiency and global convergence capability. The CPU time required for running SEO-SRBF is dramatically less than that of other algorithms. In the torque arm optimization case using FEA simulation, SEO-SRBF further reduces 21% of thematerial volume compared with the solution from static-RBF subject to the stress constraint. This study provides the efficient strategy to solve expensive constrained optimization problems. 展开更多
关键词 surrogate-based optimization global optimization significant sampling space adaptive surrogate radial basis function
在线阅读 下载PDF
Improvement of Cardiac Function by Dry Weight Optimization Based on Interdialysis Inferior Vena Caval Diameter (1) 被引量:1
20
作者 Shizue Hirayama Yasuhiro Ando +1 位作者 Yuji Sudo Yasushi Asano 《中国血液净化》 2002年第11期1-2,共2页
In hemodialysis (HD) patients, the diameter of the inferior vena cava (IVC) serves for evaluation of the amount of body fluid.
关键词 In Improvement of Cardiac Function by Dry Weight optimization based on Interdialysis Inferior Vena Caval Diameter BODY IVC
暂未订购
上一页 1 2 231 下一页 到第
使用帮助 返回顶部