Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid ...Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP.展开更多
This article presents a novel optimization approach called RSWTLBO for accurately identifying unknown parameters in photovoltaic(PV)models.The objective is to address challenges related to the detection and maintenanc...This article presents a novel optimization approach called RSWTLBO for accurately identifying unknown parameters in photovoltaic(PV)models.The objective is to address challenges related to the detection and maintenance of PV systems and the improvement of conversion efficiency.RSWTLBO combines adaptive parameter w,Single Solution Optimization Mechanism(SSOM),and Weight Probability Exploration Strategy(WPES)to enhance the optimization ability of TLBO.The algorithm achieves a balance between exploitation and exploration throughout the iteration process.The SSOM allows for local exploration around a single solution,improving solution quality and eliminating inferior solutions.The WPES enables comprehensive exploration of the solution space,avoiding the problem of getting trapped in local optima.The algo-rithm is evaluated by comparing it with 10 other competitive algorithms on various PV models.The results demonstrate that RSWTLBO consistently achieves the lowest Root Mean Square Errors on single diode models,double diode models,and PV module models.It also exhibits robust performance under varying irradiation and temperature conditions.The study concludes that RSWTLBO is a practical and effective algorithm for identifying unknown parameters in PV models.展开更多
As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been ...As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and efficiency.展开更多
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ...Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.展开更多
An improved teaching-learning-based optimization(I-TLBO)algorithm is proposed to adjust the parameters of extreme learning machine with parallel layer perception(PELM),and a well-generalized I-TLBO-PELM model is obtai...An improved teaching-learning-based optimization(I-TLBO)algorithm is proposed to adjust the parameters of extreme learning machine with parallel layer perception(PELM),and a well-generalized I-TLBO-PELM model is obtained to build the model of NOX emissions of a boiler.In the I-TLBO algorithm,there are four major highlights.Firstly,a quantum initialized population by using the qubits on Bloch sphere replaces a randomly initialized population.Secondly,two kinds of angles in Bloch sphere are generated by using cube chaos mapping.Thirdly,an adaptive control parameter is added into the teacher phase to speed up the convergent speed.And then,according to actual teaching-learning phenomenon of a classroom,students learn some knowledge not only by their teacher and classmates,but also by themselves.Therefore,a self-study strategy by using Gauss mutation is introduced after the learning phase to improve the exploration ability.Finally,we test the performance of the I-TLBO-PELM model.The experiment results show that the proposed model has better regression precision and generalization ability than eight other models.展开更多
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw...In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.展开更多
This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informat...This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informative lowdimensional space by using an autoencoder as a dimension reduction tool.The search operation conducted in this low space facilitates the population with fast convergence towards the optima.To strike the balance between exploration and exploitation during optimization,two phases of a tailored teaching-learning-based optimization(TTLBO)are adopted to coevolve solutions in a distributed fashion,wherein one is assisted by an autoencoder and the other undergoes a regular evolutionary process.Also,a dynamic size adjustment scheme according to problem dimension and evolutionary progress is proposed to promote information exchange between these two phases and accelerate evolutionary convergence speed.The proposed algorithm is validated by testing benchmark functions with dimensions varying from 50 to 200.As indicated in our experiments,TTLBO is suitable for dealing with medium-scale problems and thus incorporated into the AEO framework as a base optimizer.Compared with the state-of-the-art algorithms for MEPs,AEO shows extraordinarily high efficiency for these challenging problems,t hus opening new directions for various evolutionary algorithms under AEO to tackle MEPs and greatly advancing the field of medium-scale computationally expensive optimization.展开更多
<span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Tr...<span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Transmission line congestion trigger serious problems for smooth functioning in restructured power system causing an increase in the cost of transmission hence affecting market efficiency. Thus, it is of utmost importance for the investigation of various techniques in order to relieve congestion in the transmission network. Generation rescheduling is one of the most efficacious techniques to do away with the problem of congestion. For optimiz</span><span style="font-family:Verdana;">ing the congestion cost, this work suggests a hybrid optimization based on</span><span style="font-family:Verdana;"> two effective algorithms viz Teaching learning-based optimization (TLBO) algorithm and Particle swarm optimization (PSO) algorithm. For binding the constraints, the traditional penalty function technique is incorporated. Modified IEEE 30-bus test system and modified IEEE 57-bus test system are used to inspect the usefulness of the suggested methodology.</span>展开更多
A physically feasible,reliable,and safe motion is essential for robot operation.A parameterization-based trajectory planning approach is proposed for an 8-DOF manipulator with multiple constraints.The inverse kinemati...A physically feasible,reliable,and safe motion is essential for robot operation.A parameterization-based trajectory planning approach is proposed for an 8-DOF manipulator with multiple constraints.The inverse kinematic solution is obtained through an analytical method,and the trajectory is planned in joint space.As such,the trajectory planning of the 8-DOF manipulator is transformed into a parameterization-based trajectory optimization problem within its physical,obstacle and task constraints,and the optimization variables are significantly reduced.Then teaching-learning-based optimization(TLBO)algorithm is employed to search for the redundant parameters to generate an optimal trajectory.Simulation and physical experiment results demonstrate that this approach can effectively solve the trajectory planning problem of the manipulator.Moreover,the planned trajectory has no theoretical end-effector deviation for the task constraint.This approach can provide a reference for the motion planning of other redundant manipulators.展开更多
Metaheuristic optimization methods are iterative search processes that aim to efficiently solve complexoptimization problems. These basically find the solution space very efficiently, often without utilizing the gradi...Metaheuristic optimization methods are iterative search processes that aim to efficiently solve complexoptimization problems. These basically find the solution space very efficiently, often without utilizing the gradientinformation, and are inspired by the bio-inspired and socially motivated heuristics. Metaheuristic optimizationalgorithms are increasingly applied to complex feature selection problems in high-dimensional medical datasets.Among these, Teaching-Learning-Based optimization (TLBO) has proven effective for continuous design tasks bybalancing exploration and exploitation phases. However, its binary version (BTLBO) suffers from limited exploitationability, often converging prematurely or getting trapped in local optima, particularly when applied to discrete featureselection tasks. Previous studies reported that BTLBO yields lower classification accuracy and higher feature subsetvariance compared to other hybrid methods in benchmark tests, motivating the development of hybrid approaches.This study proposes a novel hybrid algorithm, BTLBO-Cheetah Optimizer (BTLBO-CO), which integrates the globalexploration strength of BTLBO with the local exploitation efficiency of the Cheetah Optimization (CO) algorithm. Theobjective is to enhance the feature selection process for cancer classification tasks involving high-dimensional data. Theproposed BTLBO-CO algorithm was evaluated on six benchmark cancer datasets: 11 tumors (T), Lung Cancer (LUC),Leukemia (LEU), Small Round Blue Cell Tumor or SRBCT (SR), Diffuse Large B-cell Lymphoma or DLBCL (DL), andProstate Tumor (PT).The results demonstrate superior classification accuracy across all six datasets, achieving 93.71%,96.12%, 98.13%, 97.11%, 98.44%, and 98.84%, respectively.These results validate the effectiveness of the hybrid approachin addressing diverse feature selection challenges using a Support Vector Machine (SVM) classifier.展开更多
基金the National Natural Science Foundation of China(Grant Number 61573264).
文摘Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP.
基金supported in part by the Natural Science Foundation of Zhejiang Province(LTGS23E070001)National Natural Science Foundation of China(62076185,62301367).
文摘This article presents a novel optimization approach called RSWTLBO for accurately identifying unknown parameters in photovoltaic(PV)models.The objective is to address challenges related to the detection and maintenance of PV systems and the improvement of conversion efficiency.RSWTLBO combines adaptive parameter w,Single Solution Optimization Mechanism(SSOM),and Weight Probability Exploration Strategy(WPES)to enhance the optimization ability of TLBO.The algorithm achieves a balance between exploitation and exploration throughout the iteration process.The SSOM allows for local exploration around a single solution,improving solution quality and eliminating inferior solutions.The WPES enables comprehensive exploration of the solution space,avoiding the problem of getting trapped in local optima.The algo-rithm is evaluated by comparing it with 10 other competitive algorithms on various PV models.The results demonstrate that RSWTLBO consistently achieves the lowest Root Mean Square Errors on single diode models,double diode models,and PV module models.It also exhibits robust performance under varying irradiation and temperature conditions.The study concludes that RSWTLBO is a practical and effective algorithm for identifying unknown parameters in PV models.
基金supported by the National Natural Science Foundation of China(Grant Nos.41807192,41790441)Innovation Capability Support Program of Shaanxi(Grant No.2020KJXX-005)Natural Science Basic Research Program of Shaanxi(Grant Nos.2019JLM-7,2019JQ-094)。
文摘As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and efficiency.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275366,50875190,51305311)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134219110002)
文摘Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.
基金The authors would also like to acknowledge the valuable comments and suggestions from the Editors and Reviewers,which vastly contributed to improve the presentation of the paper.This work is supported by the National Natural Science Foundations of China(61573306 and 61403331)2018 Qinhuangdao City Social Science Development Research Project(201807047 and 201807088)+1 种基金the Program for the Top Young Talents of Higher Learning Institutions of Hebei(BJ2017033)the Marine Science Special Research Project of Hebei Normal University of Science and Technology(No.2018HY021).
文摘An improved teaching-learning-based optimization(I-TLBO)algorithm is proposed to adjust the parameters of extreme learning machine with parallel layer perception(PELM),and a well-generalized I-TLBO-PELM model is obtained to build the model of NOX emissions of a boiler.In the I-TLBO algorithm,there are four major highlights.Firstly,a quantum initialized population by using the qubits on Bloch sphere replaces a randomly initialized population.Secondly,two kinds of angles in Bloch sphere are generated by using cube chaos mapping.Thirdly,an adaptive control parameter is added into the teacher phase to speed up the convergent speed.And then,according to actual teaching-learning phenomenon of a classroom,students learn some knowledge not only by their teacher and classmates,but also by themselves.Therefore,a self-study strategy by using Gauss mutation is introduced after the learning phase to improve the exploration ability.Finally,we test the performance of the I-TLBO-PELM model.The experiment results show that the proposed model has better regression precision and generalization ability than eight other models.
文摘In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.
基金supported in part by the National Natural Science Foundation of China(72171172,62088101)in part by the Shanghai Science and Technology Major Special Project of Shanghai Development and Reform Commission(2021SHZDZX0100)+2 种基金in part by the Shanghai Commission of Science and Technology(19511132100,19511132101)in part by the China Scholarship Councilin part by the Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia(FP-146-43)。
文摘This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informative lowdimensional space by using an autoencoder as a dimension reduction tool.The search operation conducted in this low space facilitates the population with fast convergence towards the optima.To strike the balance between exploration and exploitation during optimization,two phases of a tailored teaching-learning-based optimization(TTLBO)are adopted to coevolve solutions in a distributed fashion,wherein one is assisted by an autoencoder and the other undergoes a regular evolutionary process.Also,a dynamic size adjustment scheme according to problem dimension and evolutionary progress is proposed to promote information exchange between these two phases and accelerate evolutionary convergence speed.The proposed algorithm is validated by testing benchmark functions with dimensions varying from 50 to 200.As indicated in our experiments,TTLBO is suitable for dealing with medium-scale problems and thus incorporated into the AEO framework as a base optimizer.Compared with the state-of-the-art algorithms for MEPs,AEO shows extraordinarily high efficiency for these challenging problems,t hus opening new directions for various evolutionary algorithms under AEO to tackle MEPs and greatly advancing the field of medium-scale computationally expensive optimization.
文摘<span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Transmission line congestion trigger serious problems for smooth functioning in restructured power system causing an increase in the cost of transmission hence affecting market efficiency. Thus, it is of utmost importance for the investigation of various techniques in order to relieve congestion in the transmission network. Generation rescheduling is one of the most efficacious techniques to do away with the problem of congestion. For optimiz</span><span style="font-family:Verdana;">ing the congestion cost, this work suggests a hybrid optimization based on</span><span style="font-family:Verdana;"> two effective algorithms viz Teaching learning-based optimization (TLBO) algorithm and Particle swarm optimization (PSO) algorithm. For binding the constraints, the traditional penalty function technique is incorporated. Modified IEEE 30-bus test system and modified IEEE 57-bus test system are used to inspect the usefulness of the suggested methodology.</span>
基金supported by Jiangsu(Industry Foresight and Key Core Technology)Key Research and Development Project(BE2022137)the National Natural Science Foundation of China(51675358).
文摘A physically feasible,reliable,and safe motion is essential for robot operation.A parameterization-based trajectory planning approach is proposed for an 8-DOF manipulator with multiple constraints.The inverse kinematic solution is obtained through an analytical method,and the trajectory is planned in joint space.As such,the trajectory planning of the 8-DOF manipulator is transformed into a parameterization-based trajectory optimization problem within its physical,obstacle and task constraints,and the optimization variables are significantly reduced.Then teaching-learning-based optimization(TLBO)algorithm is employed to search for the redundant parameters to generate an optimal trajectory.Simulation and physical experiment results demonstrate that this approach can effectively solve the trajectory planning problem of the manipulator.Moreover,the planned trajectory has no theoretical end-effector deviation for the task constraint.This approach can provide a reference for the motion planning of other redundant manipulators.
基金funded by the Deanship of Research andGraduate Studies at King Khalid University through the Large Research Project under grant number RGP2/417/46.
文摘Metaheuristic optimization methods are iterative search processes that aim to efficiently solve complexoptimization problems. These basically find the solution space very efficiently, often without utilizing the gradientinformation, and are inspired by the bio-inspired and socially motivated heuristics. Metaheuristic optimizationalgorithms are increasingly applied to complex feature selection problems in high-dimensional medical datasets.Among these, Teaching-Learning-Based optimization (TLBO) has proven effective for continuous design tasks bybalancing exploration and exploitation phases. However, its binary version (BTLBO) suffers from limited exploitationability, often converging prematurely or getting trapped in local optima, particularly when applied to discrete featureselection tasks. Previous studies reported that BTLBO yields lower classification accuracy and higher feature subsetvariance compared to other hybrid methods in benchmark tests, motivating the development of hybrid approaches.This study proposes a novel hybrid algorithm, BTLBO-Cheetah Optimizer (BTLBO-CO), which integrates the globalexploration strength of BTLBO with the local exploitation efficiency of the Cheetah Optimization (CO) algorithm. Theobjective is to enhance the feature selection process for cancer classification tasks involving high-dimensional data. Theproposed BTLBO-CO algorithm was evaluated on six benchmark cancer datasets: 11 tumors (T), Lung Cancer (LUC),Leukemia (LEU), Small Round Blue Cell Tumor or SRBCT (SR), Diffuse Large B-cell Lymphoma or DLBCL (DL), andProstate Tumor (PT).The results demonstrate superior classification accuracy across all six datasets, achieving 93.71%,96.12%, 98.13%, 97.11%, 98.44%, and 98.84%, respectively.These results validate the effectiveness of the hybrid approachin addressing diverse feature selection challenges using a Support Vector Machine (SVM) classifier.