Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,ta...Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,tau is not an easy target because it dynamically interacts with microtubules and other cellular components,which presents a challenge for tau-targeted drugs.New cellular models could aid the development of mechanism-based tau-targeted therapies.展开更多
Alzheimer’s disease,a devastating neurodegenerative disorder,is characterized by progressive cognitive decline,primarily due to amyloid-beta protein deposition and tau protein phosphorylation.Effectively reducing the...Alzheimer’s disease,a devastating neurodegenerative disorder,is characterized by progressive cognitive decline,primarily due to amyloid-beta protein deposition and tau protein phosphorylation.Effectively reducing the cytotoxicity of amyloid-beta42 aggregates and tau oligomers may help slow the progression of Alzheimer’s disease.Conventional drugs,such as donepezil,can only alleviate symptoms and are not able to prevent the underlying pathological processes or cognitive decline.Currently,active and passive immunotherapies targeting amyloid-beta and tau have shown some efficacy in mice with asymptomatic Alzheimer’s disease and other transgenic animal models,attracting considerable attention.However,the clinical application of these immunotherapies demonstrated only limited efficacy before the discovery of lecanemab and donanemab.This review first discusses the advancements in the pathogenesis of Alzheimer’s disease and active and passive immunotherapies targeting amyloid-beta and tau proteins.Furthermore,it reviews the advantages and disadvantages of various immunotherapies and considers their future prospects.Although some antibodies have shown promise in patients with mild Alzheimer’s disease,substantial clinical data are still lacking to validate their effectiveness in individuals with moderate Alzheimer’s disease.展开更多
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal...TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.展开更多
目的观察^(18)F-flortaucipir tau PET联合APOEε4基因携带状态对轻度认知障碍(MCI)的诊断价值。方法于阿尔茨海默病神经成像倡议(ADNI)数据集中选取213例MCI(MCI组)及402名健康对照(HC组),对比分析其神经心理学信息、APOEε4基因携带...目的观察^(18)F-flortaucipir tau PET联合APOEε4基因携带状态对轻度认知障碍(MCI)的诊断价值。方法于阿尔茨海默病神经成像倡议(ADNI)数据集中选取213例MCI(MCI组)及402名健康对照(HC组),对比分析其神经心理学信息、APOEε4基因携带状态、tau PET及高分辨结构MRI数据;利用随机森林法筛选tau PET诊断MCI的重要脑区,比较tau PET鉴别携带/未携带APOEε4基因MCI与HC的效能。结果利用tau PET诊断MCI的重要脑区依次为杏仁核、海马旁回、内嗅皮层、后扣带回、颞下回、梭状回及颞中回。基于上述7个脑区ROI构建的tau PET标准摄取值比值(SUVR)模型鉴别携带APOEε4基因MCI与HC的准确率及曲线下面积(AUC)分别为86.68%及0.784,高于其鉴别MCI与HC、未携带APOEε4基因MCI与HC(准确率分别为70.57%及75.05%,AUC分别为0.711及0.609)。结论基于杏仁核、海马旁回、内嗅皮层、后扣带回、颞下回、梭状回及颞中回构建的^(18)F-flortaucipir tau PET SUVR模型可用于诊断MCI;联合APOEε4基因可进一步提高其诊断效能。展开更多
Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerativ...Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, wheth- er tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/ threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in periph- eral nerve repair and regeneration.展开更多
文摘Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,tau is not an easy target because it dynamically interacts with microtubules and other cellular components,which presents a challenge for tau-targeted drugs.New cellular models could aid the development of mechanism-based tau-targeted therapies.
基金supported by the Nature Science Foundation of Liaoning Province,Nos.2022-MS-211,2021-MS-064,and 2024-MS-048(all to YC).
文摘Alzheimer’s disease,a devastating neurodegenerative disorder,is characterized by progressive cognitive decline,primarily due to amyloid-beta protein deposition and tau protein phosphorylation.Effectively reducing the cytotoxicity of amyloid-beta42 aggregates and tau oligomers may help slow the progression of Alzheimer’s disease.Conventional drugs,such as donepezil,can only alleviate symptoms and are not able to prevent the underlying pathological processes or cognitive decline.Currently,active and passive immunotherapies targeting amyloid-beta and tau have shown some efficacy in mice with asymptomatic Alzheimer’s disease and other transgenic animal models,attracting considerable attention.However,the clinical application of these immunotherapies demonstrated only limited efficacy before the discovery of lecanemab and donanemab.This review first discusses the advancements in the pathogenesis of Alzheimer’s disease and active and passive immunotherapies targeting amyloid-beta and tau proteins.Furthermore,it reviews the advantages and disadvantages of various immunotherapies and considers their future prospects.Although some antibodies have shown promise in patients with mild Alzheimer’s disease,substantial clinical data are still lacking to validate their effectiveness in individuals with moderate Alzheimer’s disease.
基金National Natural Science Foundation of China(No.81860278)Basic Research Project of Science and Technology Department of Yunnan Province,China(No.202201AT070197)。
基金supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,the Alzheimer Forschung Initiative e.V.(grant#22039,to HZ)open-access funding from the DFG/GRC issued to the University of CologneAlzheimer Forschung Initiative e.V.for Open Access Publishing(a publication grant#P2401,to MAAK)。
文摘TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.
文摘目的观察^(18)F-flortaucipir tau PET联合APOEε4基因携带状态对轻度认知障碍(MCI)的诊断价值。方法于阿尔茨海默病神经成像倡议(ADNI)数据集中选取213例MCI(MCI组)及402名健康对照(HC组),对比分析其神经心理学信息、APOEε4基因携带状态、tau PET及高分辨结构MRI数据;利用随机森林法筛选tau PET诊断MCI的重要脑区,比较tau PET鉴别携带/未携带APOEε4基因MCI与HC的效能。结果利用tau PET诊断MCI的重要脑区依次为杏仁核、海马旁回、内嗅皮层、后扣带回、颞下回、梭状回及颞中回。基于上述7个脑区ROI构建的tau PET标准摄取值比值(SUVR)模型鉴别携带APOEε4基因MCI与HC的准确率及曲线下面积(AUC)分别为86.68%及0.784,高于其鉴别MCI与HC、未携带APOEε4基因MCI与HC(准确率分别为70.57%及75.05%,AUC分别为0.711及0.609)。结论基于杏仁核、海马旁回、内嗅皮层、后扣带回、颞下回、梭状回及颞中回构建的^(18)F-flortaucipir tau PET SUVR模型可用于诊断MCI;联合APOEε4基因可进一步提高其诊断效能。
基金supported by the National Natural Science Foundation of China,No.81130080,31300942the National Key Basic Research Program of China(973 Program)+5 种基金No.2014CB542202the Natural Science Foundation of Jiangsu Province,China,No.BK20150409the Natural Science Foundation of Jiangsu Higher Education Institutions of China,No.15KJB180013the Scientific Research Foundation of Nantong University of China,No.14R29the Natural Science Foundation of Nantong City in China,No.MS12015043the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, wheth- er tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/ threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in periph- eral nerve repair and regeneration.