Hairpin pyrrole-imidazole(Py-Im) polyamides are a class of programmable minor-groove binders that recognize pre-determined DNA double helixes with high affinity and specificity. They are capable of regulating gene exp...Hairpin pyrrole-imidazole(Py-Im) polyamides are a class of programmable minor-groove binders that recognize pre-determined DNA double helixes with high affinity and specificity. They are capable of regulating gene expression by modulating the activity of transcription factors. To date, Py-Im polyamides have been successfully applied as a potent tool to disturb DNA functions and considered as a group of promising candidates for the clinical applications. Herein, this review will focus on summarizing the recent advances of Py-Im polyamides from their synthesis to applications via various modifications at the molecular level.展开更多
A novel bifunctional compound carrying duster thiogalactoside as the cell targeting ligands was synthesized for gene delivery to hepatocytes. Tetra-antennary dendr-OMs4 5 was used as a scaffold for the attachment of t...A novel bifunctional compound carrying duster thiogalactoside as the cell targeting ligands was synthesized for gene delivery to hepatocytes. Tetra-antennary dendr-OMs4 5 was used as a scaffold for the attachment of three galactosides, while the other mesylate end was linked with cholesterol through poly(ethylene glycol) chain. This design provided an effective entry for the synthesis of the bifunctional compound.展开更多
The evolution of cancer therapies has highlighted the limitations of traditional chemotherapy,particularly its lack of specificity and off-target toxicities,driving the development of targeted treatments like small mo...The evolution of cancer therapies has highlighted the limitations of traditional chemotherapy,particularly its lack of specificity and off-target toxicities,driving the development of targeted treatments like small molecule-drug conjugates(SMDCs).SMDCs offer distinct advantages over antibody-drug conjugates(ADCs),including simpler synthesis,lower production costs,and improved solid tumor penetration due to their smaller size.However,challenges remain,such as a limited variety of targeting ligands and the complexity of optimizing selectivity and efficacy within the tumor microenvironment.This review focuses on key aspects such as mechanisms of action,biomarker selection,and the optimization of each component of SMDCs.It also covers SMDCs that have been approved or are currently under active clinical trials,while providing insights into future developments in this promising field of targeted cancer therapies.展开更多
There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels,and molecular mediators directed aga...There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels,and molecular mediators directed against harmful stimuli, is closely associated with many human diseases.As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.展开更多
基金supported by the Shenzhen Sciences & Technology Innovation Council (Nos. GJHS20170314154409805, GJHS20160331195142827, GJHS20150417103343317, JCYJ201708 1815358196, JCYJ20150401150223649 and JCYJ20170413165 916608)the National Natural Science Foundation of China (Nos. 21672254, 21778068, 21502219 and 21432003)
文摘Hairpin pyrrole-imidazole(Py-Im) polyamides are a class of programmable minor-groove binders that recognize pre-determined DNA double helixes with high affinity and specificity. They are capable of regulating gene expression by modulating the activity of transcription factors. To date, Py-Im polyamides have been successfully applied as a potent tool to disturb DNA functions and considered as a group of promising candidates for the clinical applications. Herein, this review will focus on summarizing the recent advances of Py-Im polyamides from their synthesis to applications via various modifications at the molecular level.
基金This work was supported by the National Natural Science Foundation of China (No. 30672537);Ministry of Education of ER. China (No. 20050610085).
文摘A novel bifunctional compound carrying duster thiogalactoside as the cell targeting ligands was synthesized for gene delivery to hepatocytes. Tetra-antennary dendr-OMs4 5 was used as a scaffold for the attachment of three galactosides, while the other mesylate end was linked with cholesterol through poly(ethylene glycol) chain. This design provided an effective entry for the synthesis of the bifunctional compound.
基金the financial support from the National Natural Science Foundation of China(Nos.82473781,82173652 and 81872728)the Natural Science Foundation of Jiangsu Province(No.BK20221522)Support from Jiangsu“333 High Level Talents Cultivation”Leading Talents(No.2022–3–16–203)。
文摘The evolution of cancer therapies has highlighted the limitations of traditional chemotherapy,particularly its lack of specificity and off-target toxicities,driving the development of targeted treatments like small molecule-drug conjugates(SMDCs).SMDCs offer distinct advantages over antibody-drug conjugates(ADCs),including simpler synthesis,lower production costs,and improved solid tumor penetration due to their smaller size.However,challenges remain,such as a limited variety of targeting ligands and the complexity of optimizing selectivity and efficacy within the tumor microenvironment.This review focuses on key aspects such as mechanisms of action,biomarker selection,and the optimization of each component of SMDCs.It also covers SMDCs that have been approved or are currently under active clinical trials,while providing insights into future developments in this promising field of targeted cancer therapies.
基金supported by the National Natural Science Foundation of China (81472757, 81773283, 81361140344, 81600175 and 81671815)the National Basic Research Program of China (973 Program, 2013CB932502)
文摘There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels,and molecular mediators directed against harmful stimuli, is closely associated with many human diseases.As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.