[Objectives]This study was conducted to explore the curative effect of Qingfei Ditan decoction combined with targeted drug penetration therapy of traditional Chinese medicine on severe mycoplasma pneumonia in children...[Objectives]This study was conducted to explore the curative effect of Qingfei Ditan decoction combined with targeted drug penetration therapy of traditional Chinese medicine on severe mycoplasma pneumonia in children.[Methods]Based on the retrospective study method,children with severe mycoplasma pneumonia admitted to the Children s Hospital of Soochow University from April 2023 to October 2023 were selected,and divided into a treatment group including 56 cases and a control group including 145 cases.The curative effect and adverse reactions of the two groups were compared.[Results]The total effective rate of the treatment group was higher than that of the control group,and the disappearance time of cough and lung rales was shorter than that of the control group,and the incidence of adverse reactions was lower,showing statistical significance(P<0.05).However,defervescence time and bronchoscope flushing rate showed no significant difference(P>0.05).[Conclusions]Qingfei Ditan Decoction combined with targeted drug penetration therapy of traditional Chinese medicine has a significant effect on severe mycoplasma pneumonia in children,and can reduce the side effects of drugs.It is a safe and efficient combination treatment scheme of traditional Chinese medicine.展开更多
In hard target penetration simulation, the existing researches of the convergence of results are mainly concentrating in the corresponding relationship between penetration depth and mesh scales. However, the influence...In hard target penetration simulation, the existing researches of the convergence of results are mainly concentrating in the corresponding relationship between penetration depth and mesh scales. However, the influence of the mesh difference on the penetration resistance and acceleration signals are seldom refer to. This paper presents the occurring mechanism and restraining method of numerical noise signal in penetration simulation. First, the concept of the noise signal izs proposed. By taking a 3D penetration simulation as example, the influence of the noise signal on the penetration resistance in different mesh scales and impact velocity is studied. To ensure the convergence of the computational results, the grid scale of the target is encrypted to 1:1:8. In addition, modem spectrum analysis method is introduced to further analyze the penetration resistance signal. The research results presented is useful to improve the computational accuracy of high speed projectile penetration simulation, and provide important reference for carrying out structural design and optimization of fuze system.展开更多
A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S...A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S, depending upon initial impact velocity, there exist three types of penetration, namely, penetration by a rigid long rod, penetration by a deforming non-erosive long rod and penetration by an erosive long rod. If the impact velocity of the penetrator is higher than the hydrodynamic velocity (VH), it will penetrate the target in an erosive mode; if the impact velocity lies between the hydrodynamic velocity (VH) and the rigid body velocity (VR), it will penetrate the target in a deformable mode; if the impact velocity is less than the rigid body velocity (VR), it will penetrate the target in a rigid mode. The critical conditions for the transition among these three penetration modes are proposed. It is demonstrated that the present model predictions correlate well with the experimental observations in terms of depth of penetration (DOP) and the critical transition conditions.展开更多
PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure...PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure modes of PCrNi3MoV plates impacted by tungsten spheres,tungsten spheres of various diameters(5 mm,8 mm,and 10 mm)were used to impact PCrNi3MoV steel plates with thicknesses of 6 mm,9 mm,and 14 mm.The penetration performance of the spheres was analyzed for different velocities,and the ultimate penetration velocity of the plate was obtained.It was found that the primary failure modes of the PCrNi3MoV plate were compression pitting failure and shear failure.Using the dimensional analysis method,a relationship between the bulge height of the steel plate and the fragment velocity,an equation for the ultimate penetration velocity,and a relationship between the target penetration energy and the fragment velocity were obtained.Then,a projectile-target action index was proposed to describe the process of tungsten spheres with different velocities impacting target plates.The results suggested that under the same thickness of the target plate,a larger-diameter fragment required more kinetic energy to obtain the same ultimate penetration effect as a smaller-diameter fragment.The equations obtained through dimensional analysis predicted values that agreed well with experimental values,indicating that these equations can be applied to engineering applications.展开更多
The hole penetrated in thin metallic plates due to hypervelocity impacts of cylindrical projectiles was analyzed by experimental method.The projectile caused a hole-expanding effect when penetrating the target plate b...The hole penetrated in thin metallic plates due to hypervelocity impacts of cylindrical projectiles was analyzed by experimental method.The projectile caused a hole-expanding effect when penetrating the target plate because of dynamic shear failure and extrusion.A new empirical model was presented to predict the perforation diameter in thin plates impacted by high-velocity cylindrical projectiles.The fitting coefficients resulted in a root-mean-square of 0.0641 and a correlation coefficient of 0.991.The errors between the predicted and the experimental values were less than 7.251%,and less than 4.705%for 93.333%cases of the dataset.The accuracy of the proposed model is much higher than that of Hill's model.Compared with historical equations,the new model is more accurate and can well describe the variations of different parameters with the normalized penetrated hole.The model takes into account the strength of materials,which contributes to the excellent results.This paper could provide important theoretical support for the analysis of the perforation process and its mechanism.展开更多
基金Supported by Key project of National Key R&D Program of China in 2022(2022YFC2502700).
文摘[Objectives]This study was conducted to explore the curative effect of Qingfei Ditan decoction combined with targeted drug penetration therapy of traditional Chinese medicine on severe mycoplasma pneumonia in children.[Methods]Based on the retrospective study method,children with severe mycoplasma pneumonia admitted to the Children s Hospital of Soochow University from April 2023 to October 2023 were selected,and divided into a treatment group including 56 cases and a control group including 145 cases.The curative effect and adverse reactions of the two groups were compared.[Results]The total effective rate of the treatment group was higher than that of the control group,and the disappearance time of cough and lung rales was shorter than that of the control group,and the incidence of adverse reactions was lower,showing statistical significance(P<0.05).However,defervescence time and bronchoscope flushing rate showed no significant difference(P>0.05).[Conclusions]Qingfei Ditan Decoction combined with targeted drug penetration therapy of traditional Chinese medicine has a significant effect on severe mycoplasma pneumonia in children,and can reduce the side effects of drugs.It is a safe and efficient combination treatment scheme of traditional Chinese medicine.
基金Supported by National Natural Science Foundation of China(Grant No.11372047)
文摘In hard target penetration simulation, the existing researches of the convergence of results are mainly concentrating in the corresponding relationship between penetration depth and mesh scales. However, the influence of the mesh difference on the penetration resistance and acceleration signals are seldom refer to. This paper presents the occurring mechanism and restraining method of numerical noise signal in penetration simulation. First, the concept of the noise signal izs proposed. By taking a 3D penetration simulation as example, the influence of the noise signal on the penetration resistance in different mesh scales and impact velocity is studied. To ensure the convergence of the computational results, the grid scale of the target is encrypted to 1:1:8. In addition, modem spectrum analysis method is introduced to further analyze the penetration resistance signal. The research results presented is useful to improve the computational accuracy of high speed projectile penetration simulation, and provide important reference for carrying out structural design and optimization of fuze system.
基金supported by the National Natural Science Foundation of China (10872195)
文摘A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S, depending upon initial impact velocity, there exist three types of penetration, namely, penetration by a rigid long rod, penetration by a deforming non-erosive long rod and penetration by an erosive long rod. If the impact velocity of the penetrator is higher than the hydrodynamic velocity (VH), it will penetrate the target in an erosive mode; if the impact velocity lies between the hydrodynamic velocity (VH) and the rigid body velocity (VR), it will penetrate the target in a deformable mode; if the impact velocity is less than the rigid body velocity (VR), it will penetrate the target in a rigid mode. The critical conditions for the transition among these three penetration modes are proposed. It is demonstrated that the present model predictions correlate well with the experimental observations in terms of depth of penetration (DOP) and the critical transition conditions.
文摘PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure modes of PCrNi3MoV plates impacted by tungsten spheres,tungsten spheres of various diameters(5 mm,8 mm,and 10 mm)were used to impact PCrNi3MoV steel plates with thicknesses of 6 mm,9 mm,and 14 mm.The penetration performance of the spheres was analyzed for different velocities,and the ultimate penetration velocity of the plate was obtained.It was found that the primary failure modes of the PCrNi3MoV plate were compression pitting failure and shear failure.Using the dimensional analysis method,a relationship between the bulge height of the steel plate and the fragment velocity,an equation for the ultimate penetration velocity,and a relationship between the target penetration energy and the fragment velocity were obtained.Then,a projectile-target action index was proposed to describe the process of tungsten spheres with different velocities impacting target plates.The results suggested that under the same thickness of the target plate,a larger-diameter fragment required more kinetic energy to obtain the same ultimate penetration effect as a smaller-diameter fragment.The equations obtained through dimensional analysis predicted values that agreed well with experimental values,indicating that these equations can be applied to engineering applications.
基金supported by the National Natural Science Foundation of China(No.11772269).
文摘The hole penetrated in thin metallic plates due to hypervelocity impacts of cylindrical projectiles was analyzed by experimental method.The projectile caused a hole-expanding effect when penetrating the target plate because of dynamic shear failure and extrusion.A new empirical model was presented to predict the perforation diameter in thin plates impacted by high-velocity cylindrical projectiles.The fitting coefficients resulted in a root-mean-square of 0.0641 and a correlation coefficient of 0.991.The errors between the predicted and the experimental values were less than 7.251%,and less than 4.705%for 93.333%cases of the dataset.The accuracy of the proposed model is much higher than that of Hill's model.Compared with historical equations,the new model is more accurate and can well describe the variations of different parameters with the normalized penetrated hole.The model takes into account the strength of materials,which contributes to the excellent results.This paper could provide important theoretical support for the analysis of the perforation process and its mechanism.