The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the ...A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the state estimation accuracy of moving targets in bearing-only tracking scenarios.Firstly,the measurement information of each sensor is complemented by using triangulation under the distributed framework.Secondly,the Student-t distribution is selected to model the measurement likelihood probability density function,and the joint posteriori probability density function of the estimated variables is approximately decoupled by VBI.Finally,the estimation results of each local filter are sent to the fusion center and fed back to each local filter.The simulation results show that the proposed distributed bearing-only target tracking algorithm based on VBI in the presence of abnormal measurement noise comprehensively considers the influence of system nonlinearity and random anomaly of measurement noise,and has higher estimation accuracy and robustness than other existing algorithms in the above scenarios.展开更多
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c...Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.展开更多
This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice fo...This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice for solving BoT problems owing to the reduced computational complexity. However, the coupling between the measurement vector and pseudolinear noise causes bias in PLKF. To address this issue, a bias-compensated PLKF (BC-PLKF) under the assumption of Gaussian noise was formulated. However, this assumption may not be valid in most practical cases. Therefore, a bias-compensated PLKF with maximum correntropy criterion is introduced, resulting in two new filters: maximum correntropy pseudolinear Kalman filter (MC-PLKF) and maximum correntropy bias-compensated pseudolinear Kalman filter (MC-BC-PLKF). To demonstrate the performance of the proposed estimators, a comparative analysis assuming large outliers in the process and measurement model of 2D BoT is conducted. These large outliers are modeled as non-Gaussian noises with diverse noise distributions that combine Gaussian and Laplacian noises. The simulation results are validated using root mean square error (RMSE), average RMSE (ARMSE), percentage of track loss and bias norm. Compared to PLKF and BC-PLKF, all the proposed maximum correntropy-based filters (MC-PLKF and MC-BC-PLKF) performed with superior estimation accuracy.展开更多
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte...A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.展开更多
This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and ...This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and subsequently transmits the raw observation data to the fusion center,which formulates a centralized tracking network structure.In order to establish a practical blanket jamming environment,we suppose that each target carries the self-defense jammer which automatically implements blanket jamming to the radar nodes that exceed the preset interception probability.Subsequently,the Predicted Conditional Cramer-Rao Lower Bound(PC-CRLB)is derived and utilized as the tracking accuracy criterion.Aimed at ensuring both the tracking performance and the Low Probability of Intercept(LPI)performance,the resource-saving scheduling model is formulated to minimize the transmit power consumption while meeting the requirements of tracking accuracy.Finally,the Modified Zoutendijk Method Of Feasible Directions(MZMFD)-based two-stage solution technique is adopted to solve the formulated non-convex optimization model.Simulation results show the effectiveness of the proposed JRNSPA scheme.展开更多
Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded an...Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames.More so,its fixed weight fusion strategy does not use the complementary properties of deep and shallow features.In this paper,we propose a new target tracking method,namely ECO++,using deep feature adaptive fusion in a complex scene,in the following two aspects:First,we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network.Second,we adaptively fuse the deep features,which output through the improved Conformer network,by combining the Peak to Sidelobe Ratio(PSR),frame smoothness scores and adaptive adjustment weight.Extensive experiments on the OTB-2013,OTB-2015,UAV123,and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded,blurred,and fast-moving targets.展开更多
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i...To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.展开更多
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control proble...Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.展开更多
The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrati...The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.展开更多
In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sampl...In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.展开更多
An improved particle filtering(IPF) is presented to perform maneuvering target tracking in dense clutter.The proposed filter uses several efficient variance reduction methods to combat particle degeneracy,low mode p...An improved particle filtering(IPF) is presented to perform maneuvering target tracking in dense clutter.The proposed filter uses several efficient variance reduction methods to combat particle degeneracy,low mode prior probabilities and measure-ment-origin uncertainty.Within the framework of a hybrid state estimation,each particle samples a discrete mode from its poste-rior distribution and the continuous state variables are approximated by a multivariate Gaussian mixture that is updated by an unscented Kalman filtering(UKF).The uncertainty of measurement origin is solved by Monte Carlo probabilistic data associa-tion method where the distribution of interest is approximated by particle filtering and UKF.Correct data association and precise behavior mode detection are successfully achieved by the proposed method in the environment with heavy clutter and very low mode prior probability.The performance of the proposed filter is examined and compared by Monte Carlo simulation over typical target scenario for various clutter densities.The simulation results show the effectiveness of the proposed filter.展开更多
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive...To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.展开更多
A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form ...A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form different lengths of robot arms for different application sites.The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space.This paper presents an integrated optimization method to solve the path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator.In this integrated optimization,path planning is established on a Bezier curve,and particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator.A feasible obstacle avoidance path is obtained along with a discrete trajectory tracking by using a follow-the-leader strategy.The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve.Simulation results show that this integrated optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints.The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.展开更多
A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm o...A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.展开更多
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to ...For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.展开更多
Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the taskin...Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.展开更多
While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous ...While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous navigation in an unknown dynamic environment for a single and a group of three wheeled omnidirectional mobile robots(TWOMRs). The robot has to track a dynamic target while avoiding dynamic obstacles and dynamic walls in an unknown and very dense environment. It adopts a behavior-based controller that consists of four behaviors: "target tracking", "obstacle avoidance", "dynamic wall following" and "avoid robots". The paper considers the problem of kinematic saturation. In addition, it introduces a strategy for predicting the velocity of dynamic obstacles based on two successive measurements of the ultrasonic sensors to calculate the velocity of the obstacle expressed in the sensor frame. Furthermore, the paper proposes a strategy to deal with dynamic walls even when they have U-like or V-like shapes. The approach can also deal with the formation control of a group of robots based on the leader-follower structure and the behavior-based control, where the robots have to get together and maintain a given formation while navigating toward the target, avoiding obstacles and walls in a dynamic environment. The effectiveness of the proposed approaches is demonstrated via simulation.展开更多
Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two tim...Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed.展开更多
For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will br...For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will bring trouble for cooperative manned helicopters.In this paper,we propose a new way of tracking,where an unmanned aerial vehicle(UAV) circles on one side of the tracked target.A circular path algorithm is developed for monitoring the relative position between the UAV and the target considering the real-time range and the bearing angle.This can determine the center of the new circular path if the predicted range between the UAV and the target does not meet the monitoring requirements.A transition path algorithm is presented for planning the transition path between circular paths that constrain the turning radius of the UAV.The transition path algorithm can generate waypoints that meet the flight ability.In this paper,we analyze the entire method and detail the scope of applications.We formulate an observation angle as an evaluation index.A series of simulations and evaluation index comparisons verify the effectiveness of the proposed algorithms.展开更多
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
基金Supported by the Science and Technology Key Project of Science and Technology Department of Henan Province(No.252102211041)the Key Research and Development Projects of Henan Province(No.231111212500).
文摘A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the state estimation accuracy of moving targets in bearing-only tracking scenarios.Firstly,the measurement information of each sensor is complemented by using triangulation under the distributed framework.Secondly,the Student-t distribution is selected to model the measurement likelihood probability density function,and the joint posteriori probability density function of the estimated variables is approximately decoupled by VBI.Finally,the estimation results of each local filter are sent to the fusion center and fed back to each local filter.The simulation results show that the proposed distributed bearing-only target tracking algorithm based on VBI in the presence of abnormal measurement noise comprehensively considers the influence of system nonlinearity and random anomaly of measurement noise,and has higher estimation accuracy and robustness than other existing algorithms in the above scenarios.
基金funded by the National Natural Science Foundation of China,grant number 42074176,U1939204。
文摘Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.
文摘This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice for solving BoT problems owing to the reduced computational complexity. However, the coupling between the measurement vector and pseudolinear noise causes bias in PLKF. To address this issue, a bias-compensated PLKF (BC-PLKF) under the assumption of Gaussian noise was formulated. However, this assumption may not be valid in most practical cases. Therefore, a bias-compensated PLKF with maximum correntropy criterion is introduced, resulting in two new filters: maximum correntropy pseudolinear Kalman filter (MC-PLKF) and maximum correntropy bias-compensated pseudolinear Kalman filter (MC-BC-PLKF). To demonstrate the performance of the proposed estimators, a comparative analysis assuming large outliers in the process and measurement model of 2D BoT is conducted. These large outliers are modeled as non-Gaussian noises with diverse noise distributions that combine Gaussian and Laplacian noises. The simulation results are validated using root mean square error (RMSE), average RMSE (ARMSE), percentage of track loss and bias norm. Compared to PLKF and BC-PLKF, all the proposed maximum correntropy-based filters (MC-PLKF and MC-BC-PLKF) performed with superior estimation accuracy.
基金supported by National Natural Science Foundation of China (Nos.62265010,62061024)Gansu Province Science and Technology Plan (No.23YFGA0062)Gansu Province Innovation Fund (No.2022A-215)。
文摘A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.
基金This study was supported by the National Natural Science Foundation of China(No.62001506).
文摘This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and subsequently transmits the raw observation data to the fusion center,which formulates a centralized tracking network structure.In order to establish a practical blanket jamming environment,we suppose that each target carries the self-defense jammer which automatically implements blanket jamming to the radar nodes that exceed the preset interception probability.Subsequently,the Predicted Conditional Cramer-Rao Lower Bound(PC-CRLB)is derived and utilized as the tracking accuracy criterion.Aimed at ensuring both the tracking performance and the Low Probability of Intercept(LPI)performance,the resource-saving scheduling model is formulated to minimize the transmit power consumption while meeting the requirements of tracking accuracy.Finally,the Modified Zoutendijk Method Of Feasible Directions(MZMFD)-based two-stage solution technique is adopted to solve the formulated non-convex optimization model.Simulation results show the effectiveness of the proposed JRNSPA scheme.
基金supported by the National Key R&D Plan"Intelligent Robots"Key Project of P.R.China(Grant No.2018YFB1308602)the National Natural Science Foundation of P.R.China(Grant No.61173184)+3 种基金the Chongqing Natural Science Foundation of P.R.China(Grant No.cstc2018jcyj AX0694)Research Project of Chongqing Big Data Application and Development Administration Bureau(No.22-30)Basic and Advanced Research Projects of CSTC(No.cstc2019jcyj-zdxmX0008)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K201900605)。
文摘Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames.More so,its fixed weight fusion strategy does not use the complementary properties of deep and shallow features.In this paper,we propose a new target tracking method,namely ECO++,using deep feature adaptive fusion in a complex scene,in the following two aspects:First,we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network.Second,we adaptively fuse the deep features,which output through the improved Conformer network,by combining the Peak to Sidelobe Ratio(PSR),frame smoothness scores and adaptive adjustment weight.Extensive experiments on the OTB-2013,OTB-2015,UAV123,and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded,blurred,and fast-moving targets.
文摘To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.
基金The authors would like to acknowledge National Natural Science Foundation of China(Grant No.61573285,No.62003267)Aeronautical Science Foundation of China(Grant No.2017ZC53021)+1 种基金Open Fund of Key Laboratory of Data Link Technology of China Electronics Technology Group Corporation(Grant No.CLDL-20182101)Natural Science Foundation of Shaanxi Province(Grant No.2020JQ-220)to provide fund for conducting experiments.
文摘Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.
基金supported by the Fundamental Research Funds for the Central Universities Project(CDJZR10170010)
文摘The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.
文摘In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.
基金National Natural Science Foundation of China (60975028)National High-tech Research and Development Program (2009AA112203)+1 种基金Fundamental Research Funds for the Central Universities (CHD2009JC037)Natural Science Basic Research Plan in Shaanxi Province (2006F12)
文摘An improved particle filtering(IPF) is presented to perform maneuvering target tracking in dense clutter.The proposed filter uses several efficient variance reduction methods to combat particle degeneracy,low mode prior probabilities and measure-ment-origin uncertainty.Within the framework of a hybrid state estimation,each particle samples a discrete mode from its poste-rior distribution and the continuous state variables are approximated by a multivariate Gaussian mixture that is updated by an unscented Kalman filtering(UKF).The uncertainty of measurement origin is solved by Monte Carlo probabilistic data associa-tion method where the distribution of interest is approximated by particle filtering and UKF.Correct data association and precise behavior mode detection are successfully achieved by the proposed method in the environment with heavy clutter and very low mode prior probability.The performance of the proposed filter is examined and compared by Monte Carlo simulation over typical target scenario for various clutter densities.The simulation results show the effectiveness of the proposed filter.
基金supported by the National Natural Science Fundationof China(61102109)
文摘To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.
基金Supported by National Natural Science Foundation of China(Grant No.61733017)Foundation of State Key Laboratory of Robotics of China(Grant No.2018O13)Shanghai Pujiang Program of China(Grant No.18PJD018).
文摘A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form different lengths of robot arms for different application sites.The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space.This paper presents an integrated optimization method to solve the path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator.In this integrated optimization,path planning is established on a Bezier curve,and particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator.A feasible obstacle avoidance path is obtained along with a discrete trajectory tracking by using a follow-the-leader strategy.The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve.Simulation results show that this integrated optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints.The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.
基金supported by the Pre-research Fund (N0901-041)the Funding of Jiangsu Innovation Program for Graduate Education(CX09B 081Z CX10B 110Z)
文摘A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.
基金This project was supported by the National Natural Science Foundation of China (50405017) .
文摘For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.
基金partly supported by the Agency for Science,Technology and Research(A*Star)SERC(No.0521010037,0521210082)
文摘Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.
文摘While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous navigation in an unknown dynamic environment for a single and a group of three wheeled omnidirectional mobile robots(TWOMRs). The robot has to track a dynamic target while avoiding dynamic obstacles and dynamic walls in an unknown and very dense environment. It adopts a behavior-based controller that consists of four behaviors: "target tracking", "obstacle avoidance", "dynamic wall following" and "avoid robots". The paper considers the problem of kinematic saturation. In addition, it introduces a strategy for predicting the velocity of dynamic obstacles based on two successive measurements of the ultrasonic sensors to calculate the velocity of the obstacle expressed in the sensor frame. Furthermore, the paper proposes a strategy to deal with dynamic walls even when they have U-like or V-like shapes. The approach can also deal with the formation control of a group of robots based on the leader-follower structure and the behavior-based control, where the robots have to get together and maintain a given formation while navigating toward the target, avoiding obstacles and walls in a dynamic environment. The effectiveness of the proposed approaches is demonstrated via simulation.
基金Supported by Science & Engineering Research Council of Singnpore (0521010037)
文摘Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed.
基金the Deanship of Scientific Research at King Saud University through research group number(RG-1440-048)。
文摘For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will bring trouble for cooperative manned helicopters.In this paper,we propose a new way of tracking,where an unmanned aerial vehicle(UAV) circles on one side of the tracked target.A circular path algorithm is developed for monitoring the relative position between the UAV and the target considering the real-time range and the bearing angle.This can determine the center of the new circular path if the predicted range between the UAV and the target does not meet the monitoring requirements.A transition path algorithm is presented for planning the transition path between circular paths that constrain the turning radius of the UAV.The transition path algorithm can generate waypoints that meet the flight ability.In this paper,we analyze the entire method and detail the scope of applications.We formulate an observation angle as an evaluation index.A series of simulations and evaluation index comparisons verify the effectiveness of the proposed algorithms.