期刊文献+
共找到215篇文章
< 1 2 11 >
每页显示 20 50 100
YOLO-S3DT:A Small Target Detection Model for UAV Images Based on YOLOv8 被引量:2
1
作者 Pengcheng Gao Zhenjiang Li 《Computers, Materials & Continua》 2025年第3期4555-4572,共18页
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp... The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks. 展开更多
关键词 target detection UAV images detection small target detection YOLO
在线阅读 下载PDF
Multi-scale feature fusion optical remote sensing target detection method 被引量:1
2
作者 BAI Liang DING Xuewen +1 位作者 LIU Ying CHANG Limei 《Optoelectronics Letters》 2025年第4期226-233,共8页
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram... An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved. 展开更多
关键词 multi scale feature fusion optical remote sensing feature map improve target detection ability optical remote sensing imagesfirstlythe target detection feature fusionto enrich semantic information spatial information
原文传递
Infrared small target detection based on density peaks searching and weighted multi-feature local difference
3
作者 JI Bin FAN Pengxiang +2 位作者 WANG Mengli LIU Yang XU Jiafeng 《Optoelectronics Letters》 2025年第4期218-225,共8页
To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-f... To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-feature local difference.Firstly,an improved high-boost filter is used for preprocessing to eliminate background clutter and high-brightness interference,thereby increasing the probability of capturing real targets in the density peak search.Secondly,a triple-layer window is used to extract features from the area surrounding candidate targets,addressing the uncertainty of small target sizes.By calculating multi-feature local differences between the triple-layer windows,the problems of blurred target edges and low contrast are resolved.To balance the contribution of different features,intra-class distance is used to calculate weights,achieving weighted fusion of multi-feature local differences to obtain the weighted multi-feature local differences of candidate targets.The real targets are then extracted using the interquartile range.Experiments on datasets such as SIRST and IRSTD-IK show that the proposed method is suitable for various complex types and demonstrates good robustness and detection performance. 展开更多
关键词 extract featur background clutter density peaks searching infrared small target detection weighted multi feature local difference capturing real targets density peak infrared small target detectionthis
原文传递
YOLO-LE: A Lightweight and Efficient UAV Aerial Image Target Detection Model 被引量:1
4
作者 Zhe Chen Yinyang Zhang Sihao Xing 《Computers, Materials & Continua》 2025年第7期1787-1803,共17页
Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models... Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion,their rigid architectures struggle with multi-scale adaptability,as exemplified by YOLOv8n’s 36.4%mAP and 13.9%small-object AP on VisDrone2019.This paper presents YOLO-LE,a lightweight framework addressing these limitations through three novel designs:(1)We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters,thereby improving model efficiency.(2)An adaptive feature fusion module is designed to dynamically integrate multi-scale feature maps,optimizing the neck structure,reducing neck complexity,and enhancing overall model performance.(3)We replace the original loss function with a distributed focal loss and incorporate a lightweight self-attention mechanism to improve small-object recognition and bounding box regression accuracy.Experimental results demonstrate that YOLO-LE achieves 39.9%mAP@0.5 on VisDrone2019,representing a 9.6%improvement over YOLOv8n,while maintaining 8.5 GFLOPs computational efficiency.This provides an efficient solution for UAV object detection in complex scenarios. 展开更多
关键词 Deep learning target detection UAV image YOLO adaptive feature fusion
在线阅读 下载PDF
Lightweight Underwater Target Detection Using YOLOv8 with Multi-Scale Cross-Channel Attention
5
作者 Xueyan Ding Xiyu Chen +1 位作者 Jiaxin Wang Jianxin Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期713-727,共15页
Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations ... Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations and promoting ocean exploration.Nevertheless,low imaging quality,harsh underwater environments,and obscured objects considerably increase the difficulty of detecting underwater targets,making it difficult for current detection methods to achieve optimal performance.In order to enhance underwater object perception and improve target detection precision,we propose a lightweight underwater target detection method using You Only Look Once(YOLO)v8 with multi-scale cross-channel attention(MSCCA),named YOLOv8-UOD.In the proposed multiscale cross-channel attention module,multi-scale attention(MSA)augments the variety of attentional perception by extracting information from innately diverse sensory fields.The cross-channel strategy utilizes RepVGGbased channel shuffling(RCS)and one-shot aggregation(OSA)to rearrange feature map channels according to specific rules.It aggregates all features only once in the final feature mapping,resulting in the extraction of more comprehensive and valuable feature information.The experimental results show that the proposed YOLOv8-UOD achieves a mAP50 of 95.67%and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017(URPC2017)dataset,outperforming other methods in terms of detection precision and computational cost-efficiency. 展开更多
关键词 Deep learning underwater target detection attention mechanism
在线阅读 下载PDF
Infrared small target detection algorithm via partial sum of the tensor nuclear norm and direction residual weighting
6
作者 SUN Bin XIA Xing-Ling +1 位作者 FU Rong-Guo SHI Liang 《红外与毫米波学报》 北大核心 2025年第2期277-288,共12页
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe... Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target. 展开更多
关键词 infrared small target detection infrared patch tensor model partial sum of the tensor nuclear norm direction residual weighting
在线阅读 下载PDF
Target Detection-Oriented RGCN Inference Enhancement Method
7
作者 Lijuan Zhang Xiaoyu Wang +3 位作者 Songtao Zhang Yutong Jiang Dongming Li Weichen Sun 《Computers, Materials & Continua》 2025年第4期1219-1237,共19页
In this paper,a reasoning enhancement method based on RGCN(Relational Graph Convolutional Network)is proposed to improve the detection capability of UAV(Unmanned Aerial Vehicle)on fast-moving military targets in urban... In this paper,a reasoning enhancement method based on RGCN(Relational Graph Convolutional Network)is proposed to improve the detection capability of UAV(Unmanned Aerial Vehicle)on fast-moving military targets in urban battlefield environments.By combining military images with the publicly available VisDrone2019 dataset,a new dataset called VisMilitary was built and multiple YOLO(You Only Look Once)models were tested on it.Due to the low confidence problem caused by fuzzy targets,the performance of traditional YOLO models on real battlefield images decreases significantly.Therefore,we propose an improved RGCN inference model,which improves the performance of the model in complex environments by optimizing the data processing and graph network architecture.Experimental results show that the proposed method achieves an improvement of 0.4%to 1.7%on mAP@0.50,which proves the effectiveness of the model in military target detection.The research of this paper provides a new technical path for UAV target detection in urban battlefield,and provides important enlightenment for the application of deep learning in military field. 展开更多
关键词 RGCN target detection urban battlefield YOLO visual reasoning
在线阅读 下载PDF
YOLO-SDLUWD:YOLOv7-based small target detection network for infrared images in complex backgrounds
8
作者 Jinxiu Zhu Chao Qin Dongmin Choi 《Digital Communications and Networks》 2025年第2期269-279,共11页
Infrared small-target detection has important applications in many fields due to its high penetration capability and detection distance.This study introduces a detector called“YOLO-SDLUWD”which is based on the YOLOv... Infrared small-target detection has important applications in many fields due to its high penetration capability and detection distance.This study introduces a detector called“YOLO-SDLUWD”which is based on the YOLOv7 network,for small target detection in complex infrared backgrounds.The“SDLUWD”refers to the combination of the Spatial Depth layer followed Convolutional layer structure(SD-Conv)and a Linear Up-sampling fusion Path Aggregation Feature Pyramid Network(LU-PAFPN)and a training strategy based on the normalized Gaussian Wasserstein Distance loss(WD-loss)function.“YOLO-SDLUWD”aims to reduce detection accuracy when the maximum pooling downsampling layer in the backbone network loses important feature information,support the interaction and fusion of high-dimensional and low-dimensional feature information,and overcome the false alarm predictions induced by noise in small target images.The detector achieved a mAP@0.5 of 90.4%and mAP@0.5:0.95 of 48.5%on IRIS-AG,an increase of 9%-11%over YOLOv7-tiny,outperforming other state-of-the-art target detectors in terms of accuracy and speed. 展开更多
关键词 Small infrared target detection YOLOv7 SD-Conv LU-PAFPN WD-loss
在线阅读 下载PDF
Coastal Vessel Target Detection Model Based on Improved YOLOv7
9
作者 Guiling Zhao Ziyao Xu 《哈尔滨工程大学学报(英文版)》 2025年第6期1252-1263,共12页
To address low detection accuracy in near-coastal vessel target detection under complex conditions,a novel near-coastal vessel detection model based on an improved YOLOv7 architecture is proposed in this paper.The att... To address low detection accuracy in near-coastal vessel target detection under complex conditions,a novel near-coastal vessel detection model based on an improved YOLOv7 architecture is proposed in this paper.The attention mechanism Coordinate Attention is used to improve channel attention weight and enhance a network’s ability to extract small target features.In the enhanced feature extraction network,the lightweight convolution algorithm Grouped Spatial Convolution is used to replace MPConv to reduce model calculation costs.EIoU Loss is used to replace the regression frame loss function in YOLOv7 to reduce the probability of missed and false detection.The performance of the improved model was verified using an enhanced dataset obtained through rainy and foggy weather simulation.Experiments were conducted on the datasets before and after the enhancement.The improved model achieved a mean average precision(mAP)of 97.45%on the original dataset,and the number of parameters was reduced by 2%.On the enhanced dataset,the mAP of the improved model reached 88.08%.Compared with seven target detection models,such as Faster R-CNN,YOLOv3,YOLOv4,YOLOv5,YOLOv7,YOLOv8-n,and YOLOv8-s,the improved model can effectively reduce the missed and false detection rates and improve target detection accuracy.The improved model not only accurately detects vessels in complex weather environments but also outperforms other methods on original and enhanced SeaShip datasets.This finding shows that the improved model can achieve near-coastal vessel target detection in multiple environments,laying the foundation for vessel path planning and automatic obstacle avoidance. 展开更多
关键词 Vessel target detection YOLOv7 Attention mechanism Lightweight convolution Data enhancement
在线阅读 下载PDF
Attention Shift-Invariant Cross-Evolutionary Feature Fusion Network for Infrared Small Target Detection
10
作者 Siqi Zhang Shengda Pan 《Computers, Materials & Continua》 2025年第9期4655-4676,共22页
Infrared images typically exhibit diverse backgrounds,each potentially containing noise and target-like interference elements.In complex backgrounds,infrared small targets are prone to be submerged by background noise... Infrared images typically exhibit diverse backgrounds,each potentially containing noise and target-like interference elements.In complex backgrounds,infrared small targets are prone to be submerged by background noise due to their low pixel proportion and limited available features,leading to detection failure.To address this problem,this paper proposes an Attention Shift-Invariant Cross-Evolutionary Feature Fusion Network(ASCFNet)tailored for the detection of infrared weak and small targets.The network architecture first designs a Multidimensional Lightweight Pixel-level Attention Module(MLPA),which alleviates the issue of small-target feature suppression during deep network propagation by combining channel reshaping,multi-scale parallel subnet architectures,and local cross-channel interactions.Then,a Multidimensional Shift-Invariant Recall Module(MSIR)is designed to ensure the network remains unaffected by minor input perturbations when processing infrared images,through focusing on the model’s shift invariance.Subsequently,a Cross-Evolutionary Feature Fusion structure(CEFF)is designed to allow flexible and efficient integration of multidimensional feature information from different network hierarchies,thereby achieving complementarity and enhancement among features.Experimental results on three public datasets,SIRST,NUDT-SIRST,and IRST640,demonstrate that our proposed network outperforms advanced algorithms in the field.Specifically,on the NUDT-SIRST dataset,the mAP50,mAP50-95,and metrics reached 99.26%,85.22%,and 99.31%,respectively.Visual evaluations of detection results in diverse scenarios indicate that our algorithm exhibits an increased detection rate and reduced false alarm rate.Our method balances accuracy and real-time performance,and achieves efficient and stable detection of infrared weak and small targets. 展开更多
关键词 Deep learning infrared small target detection complex scenes feature fusion convolution pooling
在线阅读 下载PDF
An Infrared Small Target Detection Method for Unmanned Aerial Vehicles Integrating Adaptive Feature Focusing Diffusion and Edge Enhancement
11
作者 Jiale Wang 《Journal of Electronic Research and Application》 2025年第6期1-6,共6页
In the context of target detection under infrared conditions for drones,the common issues of high missed detection rates,low signal-to-noise ratio,and blurred edge features for small targets are prevalent.To address t... In the context of target detection under infrared conditions for drones,the common issues of high missed detection rates,low signal-to-noise ratio,and blurred edge features for small targets are prevalent.To address these challenges,this paper proposes an improved detection algorithm based on YOLOv11n.First,a Dynamic Multi-Scale Feature Fusion and Adaptive Weighting approach is employed to design an Adaptive Focused Diffusion Pyramid Network(AFDPN),which enhances the feature expression and transmission capability of shallow small targets,thereby reducing the loss of detailed information.Then,combined with an Edge Enhancement(EE)module,the model improves the extraction of infrared small target edge features through low-frequency suppression and high-frequency enhancement strategies.Experimental results on the publicly available HIT-UAV dataset show that the improved model achieves a 3.8%increase in average detection accuracy and a 3.0%improvement in recall rate compared to YOLOv11n,with a computational cost of only 9.1 GFLOPS.In comparison experiments,the detection accuracy and model size balance achieved the optimal solution,meeting the lightweight deployment requirements for drone-based systems.This method provides a high-precision,lightweight solution for small target detection in drone-based infrared imagery. 展开更多
关键词 Infrared detection of unmanned aerial vehicles YOLOv11 Adaptive feature fusion Edge enhancement Small target detection
在线阅读 下载PDF
ProNet:Underwater Forward-Looking Sonar Images Target Detection Network Based on Progressive Sensitivity Capture
12
作者 Kaiqiao Wang Peng Liu Chun Zhang 《Computers, Materials & Continua》 2025年第3期4931-4948,共18页
Underwater target detection in forward-looking sonar(FLS)images is a challenging but promising endeavor.The existing neural-based methods yield notable progress but there remains room for improvement due to overlookin... Underwater target detection in forward-looking sonar(FLS)images is a challenging but promising endeavor.The existing neural-based methods yield notable progress but there remains room for improvement due to overlooking the unique characteristics of underwater environments.Considering the problems of low imaging resolution,complex background environment,and large changes in target imaging of underwater sonar images,this paper specifically designs a sonar images target detection Network based on Progressive sensitivity capture,named ProNet.It progressively captures the sensitive regions in the current image where potential effective targets may exist.Guided by this basic idea,the primary technical innovation of this paper is the introduction of a foundational module structure for constructing a sonar target detection backbone network.This structure employs a multi-subspace mixed convolution module that initially maps sonar images into different subspaces and extracts local contextual features using varying convolutional receptive fields within these heterogeneous subspaces.Subsequently,a Scale-aware aggregation module effectively aggregates the heterogeneous features extracted from different subspaces.Finally,the multi-scale attention structure further enhances the relational perception of the aggregated features.We evaluated ProNet on three FLS datasets of varying scenes,and experimental results indicate that ProNet outperforms the current state-of-the-art sonar image and general target detectors. 展开更多
关键词 Forward-looking sonar image target detection subspace decomposition progressive sensitivity capture
在线阅读 下载PDF
YOLO-DBS:Efficient Target Detection in Complex Underwater Scene Images Based on Improved YOLOv8
13
作者 WANG Xinhua SONG Xiangyang +1 位作者 LI Zhuang WANG Heqi 《Journal of Ocean University of China》 2025年第4期979-992,共14页
Underwater imaging is frequently influenced by factors such as illumination,scattering,and refraction,which can result in low image contrast and blurriness.Moreover,the presence of numerous small,overlapping targets r... Underwater imaging is frequently influenced by factors such as illumination,scattering,and refraction,which can result in low image contrast and blurriness.Moreover,the presence of numerous small,overlapping targets reduces detection accuracy.To address these challenges,first,green channel images are preprocessed to rectify color bias while improving contrast and clarity.Se-cond,the YOLO-DBS network that employs deformable convolution is proposed to enhance feature learning from underwater blurry images.The ECA attention mechanism is also introduced to strengthen feature focus.Moreover,a bidirectional feature pyramid net-work is utilized for efficient multilayer feature fusion while removing nodes that contribute minimally to detection performance.In addition,the SIoU loss function that considers factors such as angular error and distance deviation is incorporated into the network.Validation on the RUOD dataset demonstrates that YOLO-DBS achieves approximately 3.1%improvement in mAP@0.5 compared with YOLOv8n and surpasses YOLOv9-tiny by 1.3%.YOLO-DBS reduces parameter count by 32%relative to YOLOv8n,thereby demonstrating superior performance in real-time detection on underwater observation platforms. 展开更多
关键词 underwater target detection complex underwater environment lightweight network model
在线阅读 下载PDF
Adaptive moving target detection algorithm based on Gaussian mixture model 被引量:1
14
作者 杨欣 刘加 +1 位作者 费树岷 周大可 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期379-383,共5页
In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions ... In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes. 展开更多
关键词 moving target detection Gaussian mixture model background subtraction adaptive method
在线阅读 下载PDF
Ghost-YOLO v8:An Attention-Guided Enhanced Small Target Detection Algorithm for Floating Litter on Water Surfaces 被引量:1
15
作者 Zhongmin Huangfu Shuqing Li Luoheng Yan 《Computers, Materials & Continua》 SCIE EI 2024年第9期3713-3731,共19页
Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightwe... Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightweight Ghost-YOLO(You Only Look Once)v8 algorithm.The algorithmintegrates advanced attention mechanisms and a smalltarget detection head to significantly enhance detection performance and efficiency.Firstly,an SE(Squeeze-and-Excitation)mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization.This mechanism models feature channel dependencies,enabling adaptive adjustment of channel importance,thereby improving recognition of floating litter targets.Secondly,a 160×160 small-target detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target scales.This design enhances the fusion of deep and shallow semantic information,improving small target feature representation and enabling better capture and identification of tiny floating litter.Thirdly,to balance performance and efficiency,the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.Additionally,a novel C2fGhost(CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost)module is introduced to further reduce network parameters.Lastly,to address the challenge of occlusion,a newloss function,WIoU(Wise Intersection over Union)v3 incorporating a flexible and non-monotonic concentration approach,is adopted to improve detection rates for surface floating litter.The outcomes of the experiments demonstrate that the Ghost-YOLO v8 model proposed in this paper performs well in the dataset Marine,significantly enhances precision and recall by 3.3 and 7.6 percentage points,respectively,in contrast with the base model,mAP@0.5 and mAP 0.5:0.95 improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88MB,the FPS value hardly decreases,and the efficient real-time identification of floating debris on the water’s surface can be achieved costeffectively. 展开更多
关键词 YOLO v8 surface floating litter target detection attention mechanism small target detection head ghostnet loss function
在线阅读 下载PDF
DEVELOPMENT OF MOVING TARGET DETECTION AND IMAGING BY AIRBORNE SAR
16
作者 孙泓波 顾红 +1 位作者 苏卫民 刘国岁 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期59-67,共9页
The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving t... The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out. 展开更多
关键词 synthetic aperture rada r moving target detection radar imaging clutter cancellation
在线阅读 下载PDF
Target Detection Algorithm in Foggy Scenes Based on Dual Subnets
17
作者 Yuecheng Yu Liming Cai +3 位作者 Anqi Ning Jinlong Shi Xudong Chen Shixin Huang 《Computers, Materials & Continua》 SCIE EI 2024年第2期1915-1931,共17页
Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the ima... Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the image by the universal detection network.Thus,a dual subnet based on multi-task collaborative training(DSMCT)is proposed in this paper.Firstly,in the training phase,the Gated Context Aggregation Network(GCANet)is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes.In the test phase,only the YOLOX branch needs to be activated to ensure the detection speed of the model.Secondly,the deformable convolution module is used to improve GCANet to enhance the model’s ability to capture details of non-homogeneous fog.Finally,the Coordinate Attention mechanism is introduced into the Vision Transformer and the backbone network of YOLOX is redesigned.In this way,the feature extraction ability of the network for deep-level information can be enhanced.The experimental results on artificial fog data set FOG_VOC and real fog data set RTTS show that the map value of DSMCT reached 86.56%and 62.39%,respectively,which was 2.27%and 4.41%higher than the current most advanced detection model.The DSMCT network has high practicality and effectiveness for target detection in real foggy scenes. 展开更多
关键词 target detection fog target detection YOLOX twin network multi-task learning
在线阅读 下载PDF
SDaDCS Remote Sensing Target Detection Algorithm
18
作者 Meijing Gao Yunjia Xie +6 位作者 Xiangrui Fan Kunda Wang Sibo Chen Huanyu Sun Bingzhou Sun Xu Chen Ning Guan 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期556-569,共14页
In the field of remote sensing,the rapid and accurate acquisition of the category and location of airplanes has emerged as a prominent research.However,remote sensing fuzzy imaging and complex environmental interferen... In the field of remote sensing,the rapid and accurate acquisition of the category and location of airplanes has emerged as a prominent research.However,remote sensing fuzzy imaging and complex environmental interference affect airplane detection.Besides,the inconsistency in the size of remote sensing images and the low accuracy of small target detection are crucial challenges that need to be addressed.To tackle these issues,we propose a novel network SDaDCS(SAHI-data augmentation-dilation-channel and spatial attention)based on YOLOX model and the slicing aided hyper inference(SAHI)framework,a new data augmentation technique and dilation-channel and spatial(DCS)attention mechanism.Initially,we create a remote sensing dataset for airplane targets and introduce a new data augmentation technique based on the Rotate-Mixup and mixed data augmentation to enhance data diversity.The DCS attention mechanism,which comprises the dilated convolution block,channel attention and spatial attention,is designed to bolster the feature extraction and discrimination of the network.To address the challenges arised by the difficulties of detecting small targets,we integrate the YOLOX model with the SAHI framework.Experiment results show that,when compared to the original YOLOX model,the proposed SDaDCS remote sensing target detection algorithm enhances overall accuracy by 13.6%.The experimental results validate the effectiveness of the proposed algorithm. 展开更多
关键词 remote sensing target detection SDaDCS small target detection slicing aided hyper inference(SAHI) DCS attention mechanism
在线阅读 下载PDF
Point association analysis of vessel target detection with SAR, HFSWR and AIS 被引量:10
19
作者 JI Yonggang ZHANG Jie +1 位作者 MENG Junmin WANG Yiming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第9期73-81,共9页
A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. Thes... A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. These three sensors have their own advantages and weaknesses, and they can complement each other in some situations. So it would improve the capability of vessel target detection to use multiple sensors including SAR, HFSWR, and A/S to identify non-cooperative vessel targets from the fusion results. During the fusion process of multiple sensors' detection results, point association is one of the key steps, and it can affect the accuracy of the data fusion and the efficiency of a non-cooperative target's recognition. This study investigated the point association analyses of vessel target detection under different conditions: space- borne SAR paired with AIS, as well as HFSWR, paired with AIS, and the characteristics of the SAR and the HFSWR and their capability of vessel target detection. Then a point association method of multiple sensors was proposed. Finally, the thresholds selection of key parameters in the points association (including range threshold, radial velocity threshold, and azimuth threshold) were investigated, and their influences on final association results were analyzed. 展开更多
关键词 vessel target detection SAR HFSWR AIS point association data fusion
在线阅读 下载PDF
he adaptive chirplet transform and its application in GPR target detection 被引量:8
20
作者 Zeng Zhaofa Wu Fengshou +2 位作者 Huang Ling Liu Fengshan Sun Jiguang 《Applied Geophysics》 SCIE CSCD 2009年第2期192-200,共9页
GPR has become an important geophysical method in UXO and landmine detection, for it can detect both metal and non-metallic targets. However, it is difficult to remove the strong clutters from surface-layer reflection... GPR has become an important geophysical method in UXO and landmine detection, for it can detect both metal and non-metallic targets. However, it is difficult to remove the strong clutters from surface-layer reflection and soil due to the low signal to noise ratio of GPR data. In this paper, we use the adaptive chirplet transform to reject these clutters based on their character and then pick up the signal from the UXO by the transform based on the Radon-Wigner distribution. The results from the processing show that the clutter can be rejected effectively and the target response can be measured with high SNR. 展开更多
关键词 GPR target detection clutter rejection chirplet transform
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部