This Letter presents intrinsic Fabry–Perot interferometers in the fiber tapers fabricated by the femtosecond laser micromachining technique. The sensing of temperatures as high as 1000°C based on the fiber devic...This Letter presents intrinsic Fabry–Perot interferometers in the fiber tapers fabricated by the femtosecond laser micromachining technique. The sensing of temperatures as high as 1000°C based on the fiber device is characterized, with a sensitivity of 15.28 pm∕°C. A nearly linear refractive index sensing is also obtained by using the fringe visibility to characterize, with a sensitivity of 73.05 dB∕RIU. These intrinsic Fabry–Perot interferometers in fiber tapers may be useful in applications of high-temperature and linear refractive index sensing.展开更多
A mode transformer based on the quasi-vertical taper is designed to enable high coupling efficiency for interboardlevel optical interconnects involving single-mode polymer waveguides and standard single-mode fibers. A...A mode transformer based on the quasi-vertical taper is designed to enable high coupling efficiency for interboardlevel optical interconnects involving single-mode polymer waveguides and standard single-mode fibers. A triangular region fabricated above the waveguide is adopted to adiabatically transform the mode from the fiber into the polymer waveguide. The effects of the geometrical parameters of the taper, including width, height, tip width,etc., on the coupling efficiency are numerically investigated. Based on this, a quasi-vertical taper for the polymer rib waveguide system is designed, fabricated, and characterized. Coupling losses of 1.79 0.30 and 2.23 0.31 dB per coupler for the quasi-TM and quasi-TE mode, respectively, are measured across the optical communication C and L bands(1535 to 1610 nm). Low-cost packaging, leading to widespread utilization of polymeric photonicdevices, is envisioned for optical interconnect applications.展开更多
Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve b...Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.展开更多
A two-dimensional finite element model was used to analyze the thermal and mechanical behavior during solidification of the strand in a continuous bloom casting mold. The coupled heat transfer and deformation were ana...A two-dimensional finite element model was used to analyze the thermal and mechanical behavior during solidification of the strand in a continuous bloom casting mold. The coupled heat transfer and deformation were analyzed to simulate the formation of the air gap between the mold and the strand. The model was used to investigate the influence of mold taper on the temperature and stress distributions in the strand. The results show that the air gap mainly forms around the strand corner, causing a hotter and thinner solidifying shell in this region. The mold taper partially compensates for the strand shell shrinkage and reduces the influence of the air gap on the heat transfer. The mold taper compresses the shell and changes the stress state around the strand corner region. As the strand moves down into the mold, the mold constraint causes compressive stress beneath the corner surface, which reduces the hot tear that forms on the strand.展开更多
Suspended core fiber tapers with different cross sections (with diameters from 70μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a m...Suspended core fiber tapers with different cross sections (with diameters from 70μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change Occurs.展开更多
Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF ...Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.展开更多
In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to con...In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.展开更多
BACKGROUND Immune checkpoint inhibitors(ICIs)have revolutionized cancer therapy but are associated with immune-related adverse events,including ICIs hepatitis.Mycophenolate mofetil(MMF)is often used as a second-line i...BACKGROUND Immune checkpoint inhibitors(ICIs)have revolutionized cancer therapy but are associated with immune-related adverse events,including ICIs hepatitis.Mycophenolate mofetil(MMF)is often used as a second-line immunosuppressive agent for steroid-refractory cases.However,there is no standardized approach to MMF tapering,leading to uncertainties regarding relapse risk,optimal tapering strategies,and long-term outcomes.AIM To evaluate current evidence on MMF tapering in ICI hepatitis,focusing on strategies,clinical outcomes,and the risk of hepatitis recurrence.Additionally,we explore the feasibility of reintroducing ICI therapy after immunosuppression withdrawal.METHODS A comprehensive literature search was conducted in PubMed,EMBASE,and clinical trial registries to identify studies reporting MMF use and tapering strategies in ICI hepatitis.We extracted data from manuscripts including patient characteristics,MMF dosing regimens,tapering duration,relapse rates,and oncologic outcomes.Risk factors for recurrence and successful tapering were analyzed.RESULTS There was significant heterogeneity in the duration of MMF taper,which ranged from 4 weeks to greater than 6 months.The tapering schedules presented were individualized based on the severity of liver injury,patient response to treatment,and risk factors for relapse.We summarize current tapering approaches,including rapid vs slow withdrawal,predictors of successful tapering,and alternative immunosuppressive strategies.The impact of MMF duration on liver recovery,relapse risk,and cancer prognosis will be discussed.Evidence on ICI rechallenge post-taper will also be reviewed.CONCLUSION While MMF is effective in managing ICI hepatitis,tapering remains a clinical challenge with potential risks of hepatitis flare and disease progression.Standardized tapering protocols are needed to optimize immunosuppression while preserving anticancer efficacy.Future studies should focus on biomarker-driven tapering strategies and prospective trials to establish best practices.展开更多
Stem volume estimation is crucial in forest ecology and management,particularly for timber harvesting strategies and carbon stock assessments.This study aimed to develop a variable-exponent taper equation specifically...Stem volume estimation is crucial in forest ecology and management,particularly for timber harvesting strategies and carbon stock assessments.This study aimed to develop a variable-exponent taper equation specifically tailored to savanna tree species using close-range photogrammetry(CRP)data and to evaluate its performance against conventional volume equations for stem volume estimation.A dataset of 30 trees across five dominant savanna species was used to fit the taper model,which was validated using a separate dataset of 322 trees from 14 species.The results demonstrated significant improvements in volume estimation accuracy when using the taper equation.At the tree level,the root mean square error(RMSE)decreased by 47%,from 598 to 319 dm^(3),and the mean absolute bias(MAB)by 48%,from 328 to 172 dm3,compared to volume equations.Similarly,at the plot level,RMSE was reduced by 42% and MAB by 40%.The model performed well for species with regular forms.However,species with irregular tapers exhibited higher errors,reflecting the challenges of modeling stem forms of mixed species.The use of CRP proved valuable,providing high-resolution diameter measurements that improved model parameterization.This study underscores the importance of advanced data collection methods for enhancing taper model accuracy and suggests that further species-specific adjustments are needed to improve performance for species with irregular forms.The findings support the broader application of taper equations for improving stem volume estimates in savanna ecosystems,contributing to better forest management and resource monitoring practices.展开更多
BACKGROUND Cardiac sarcoidosis(CS)is an infiltrative disease with manifestations such as nonsustained ventricular tachycardia(NSVT)and heart failure(HF).Antiphospholipid syndrome(APS)and antiphospholipid positivity(AP...BACKGROUND Cardiac sarcoidosis(CS)is an infiltrative disease with manifestations such as nonsustained ventricular tachycardia(NSVT)and heart failure(HF).Antiphospholipid syndrome(APS)and antiphospholipid positivity(APP)are prothrombotic phenomena which elevate risk for thromboembolism.CS with active systemic sarcoid and APS/APP is a rare combination of diseases.CASE SUMMARY A 54 year old male with HF presented with several cardiopulmonary symptoms.Chest imaging showed bilateral patchy and reticulonodular infiltrates.Subsequent lung biopsy confirmed pulmonary sarcoidosis.Positron emission tomography revealed active systemic sarcoidosis(SS)and fibrotic CS.Positive antiphospholipid antibodies without thromboembolism confirmed APP.HF and APP were managed with medical therapy.Fibrotic CS and NSVT required permanent cardiac device and antiarrhythmic therapy.SS was managed with early taper of steroids and transition to biologics.CONCLUSION Fibrotic CS with active SS and APS/APP has not been previously described in literature.This case utilized a modified approach for the management of this combination of diseases.As immunosuppressants such as steroids have limited utility in fibrotic sarcoidosis and a potential for thromboembolic complications in the presence of APP,an accelerated transition to non-thrombotic immunosuppressants can be advantageous in the long term treatment of this combination of diseases.展开更多
This paper presents a biosensor utilizing a whispering gallery mode(WGM)resonator characterized by azimuthal symmetry and crescent-shaped coatings of silver.The study investigates the impact of the coupling gap on the...This paper presents a biosensor utilizing a whispering gallery mode(WGM)resonator characterized by azimuthal symmetry and crescent-shaped coatings of silver.The study investigates the impact of the coupling gap on the extinction ratio and Q-factor of the setup.The resonator is coated with silver in crescent shapes,ranging from 40 nm to 65 nm in thickness.Coupling is achieved with a silica waveguide,simulating the tapered fiber coupling method.Notably,the resonator exhibits a maximum sensitivity of 220 nm/RIU when coated with 55-nm-thick silver in conjunction with a 4-nm-thick layer of thiol-tethered deoxyribonucleic acid(DNA).This biosensor holds promise for biomolecule detection applications.展开更多
Quantum photonic integrated circuits offer enhanced stability and scalability for quantum communications,sensing, and computing. Transverse modes in multimode waveguides enable high-dimensional scalability and versati...Quantum photonic integrated circuits offer enhanced stability and scalability for quantum communications,sensing, and computing. Transverse modes in multimode waveguides enable high-dimensional scalability and versatile photon manipulation, but practical adoption requires compact and fabrication-tolerant quantum interference devices. Here, we present an ultra-compact taper-stepped beamsplitter that enables quantum interference between photon pairs in different transverse modes, and cascade it to realize NOON state interferometry. We experimentally achieve high visibilities of 93.9% for HOM interference and 86.5% for NOON state interference,demonstrating that efficient mode interference with active tuning can be realized on this platform.展开更多
The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, ...The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.展开更多
The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for cont...The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for controlling the four-axis motion is proposed. The algorithm is applicable to both the invariable and variable taper machining. Motion loci of the machining platform and the wire guiding head are deduced by the algorithm according to the bottom surface locus of the workpiece and the taper angle. The algorithm is used in the CNC system of the four-axis WEDM machine tool and confirmed to be effective.展开更多
An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is...An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is ~40% shorter in length.The device exhibits uniformity of 1 3dB and excess loss of 2 5dB.展开更多
Since the advent of three-dimensional photonic integrated circuits,the realization of efficient and compact optical interconnection between layers has become an important development direction.A vertical interlayer co...Since the advent of three-dimensional photonic integrated circuits,the realization of efficient and compact optical interconnection between layers has become an important development direction.A vertical interlayer coupler between two silicon layers is presented in this paper.The coupling principle of the directional coupler is analyzed,and the traditional method of using a pair of vertically overlapping inverse taper structures is improved.For the coupling of two rectangular waveguide layers,a pair of nonlinear tapers with offset along the transmission direction is demonstrated.For the coupling of two ridge waveguide layers,a nonlinear taper in each layer is used to achieve high coupling efficiency.The simulation results show that the coupling efficiency of the two structures can reach more than 90%in a wavelength range from 1500 nm to 1650 nm.Moreover,the crosstalk is reduced to less than-50 d B by using multimode waveguides at intersections.The vertical interlayer coupler with a nonlinear taper is expected to realize the miniaturization and dense integration of photonic integrated chips.展开更多
A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a ta...A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a tapered rib core region and a double cladding region.Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region.The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular.A novel,easy method of fabricating tapered rib spot size converter based on silicon on insulator material is proposed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61377081 and 61007035)the Chen Guang project by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(No.12CG48)the Science and Technology Commission of Shanghai Municipality(STCSM)(No.14511105602)
文摘This Letter presents intrinsic Fabry–Perot interferometers in the fiber tapers fabricated by the femtosecond laser micromachining technique. The sensing of temperatures as high as 1000°C based on the fiber device is characterized, with a sensitivity of 15.28 pm∕°C. A nearly linear refractive index sensing is also obtained by using the fringe visibility to characterize, with a sensitivity of 73.05 dB∕RIU. These intrinsic Fabry–Perot interferometers in fiber tapers may be useful in applications of high-temperature and linear refractive index sensing.
基金supported by Air Force Office of Scientific Research (AFOSR) for supporting this work under the Small Business Technology Transfer Research (STTR) program (grant no. FA9550-14-C-0001)
文摘A mode transformer based on the quasi-vertical taper is designed to enable high coupling efficiency for interboardlevel optical interconnects involving single-mode polymer waveguides and standard single-mode fibers. A triangular region fabricated above the waveguide is adopted to adiabatically transform the mode from the fiber into the polymer waveguide. The effects of the geometrical parameters of the taper, including width, height, tip width,etc., on the coupling efficiency are numerically investigated. Based on this, a quasi-vertical taper for the polymer rib waveguide system is designed, fabricated, and characterized. Coupling losses of 1.79 0.30 and 2.23 0.31 dB per coupler for the quasi-TM and quasi-TE mode, respectively, are measured across the optical communication C and L bands(1535 to 1610 nm). Low-cost packaging, leading to widespread utilization of polymeric photonicdevices, is envisioned for optical interconnect applications.
文摘Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.
基金the Iron and Steel Research Joint Fund of the National Natural Science Foundation of China (No. 50474088)Baoshan Steel Complex of Shanghai in China
文摘A two-dimensional finite element model was used to analyze the thermal and mechanical behavior during solidification of the strand in a continuous bloom casting mold. The coupled heat transfer and deformation were analyzed to simulate the formation of the air gap between the mold and the strand. The model was used to investigate the influence of mold taper on the temperature and stress distributions in the strand. The results show that the air gap mainly forms around the strand corner, causing a hotter and thinner solidifying shell in this region. The mold taper partially compensates for the strand shell shrinkage and reduces the influence of the air gap on the heat transfer. The mold taper compresses the shell and changes the stress state around the strand corner region. As the strand moves down into the mold, the mold constraint causes compressive stress beneath the corner surface, which reduces the hot tear that forms on the strand.
文摘Suspended core fiber tapers with different cross sections (with diameters from 70μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change Occurs.
基金the National Science and Technology Major Project of China(No.2019-VII0017e0158)the National Natural Science Foundation of China(No.U21A20131)+1 种基金the Industry-University Research Cooperation Project,China(No.HFZL2020CXY025)the National Key Laboratory of Science and Technology on Helicopter Transmission,China(No.HTL-O-21G05).
文摘Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.
基金financial supports from National Natural Science Foundation of China(62175023).
文摘In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.
文摘BACKGROUND Immune checkpoint inhibitors(ICIs)have revolutionized cancer therapy but are associated with immune-related adverse events,including ICIs hepatitis.Mycophenolate mofetil(MMF)is often used as a second-line immunosuppressive agent for steroid-refractory cases.However,there is no standardized approach to MMF tapering,leading to uncertainties regarding relapse risk,optimal tapering strategies,and long-term outcomes.AIM To evaluate current evidence on MMF tapering in ICI hepatitis,focusing on strategies,clinical outcomes,and the risk of hepatitis recurrence.Additionally,we explore the feasibility of reintroducing ICI therapy after immunosuppression withdrawal.METHODS A comprehensive literature search was conducted in PubMed,EMBASE,and clinical trial registries to identify studies reporting MMF use and tapering strategies in ICI hepatitis.We extracted data from manuscripts including patient characteristics,MMF dosing regimens,tapering duration,relapse rates,and oncologic outcomes.Risk factors for recurrence and successful tapering were analyzed.RESULTS There was significant heterogeneity in the duration of MMF taper,which ranged from 4 weeks to greater than 6 months.The tapering schedules presented were individualized based on the severity of liver injury,patient response to treatment,and risk factors for relapse.We summarize current tapering approaches,including rapid vs slow withdrawal,predictors of successful tapering,and alternative immunosuppressive strategies.The impact of MMF duration on liver recovery,relapse risk,and cancer prognosis will be discussed.Evidence on ICI rechallenge post-taper will also be reviewed.CONCLUSION While MMF is effective in managing ICI hepatitis,tapering remains a clinical challenge with potential risks of hepatitis flare and disease progression.Standardized tapering protocols are needed to optimize immunosuppression while preserving anticancer efficacy.Future studies should focus on biomarker-driven tapering strategies and prospective trials to establish best practices.
基金partially funded by the International Foundation for Science(Grant No:I-1-D-6066-1).
文摘Stem volume estimation is crucial in forest ecology and management,particularly for timber harvesting strategies and carbon stock assessments.This study aimed to develop a variable-exponent taper equation specifically tailored to savanna tree species using close-range photogrammetry(CRP)data and to evaluate its performance against conventional volume equations for stem volume estimation.A dataset of 30 trees across five dominant savanna species was used to fit the taper model,which was validated using a separate dataset of 322 trees from 14 species.The results demonstrated significant improvements in volume estimation accuracy when using the taper equation.At the tree level,the root mean square error(RMSE)decreased by 47%,from 598 to 319 dm^(3),and the mean absolute bias(MAB)by 48%,from 328 to 172 dm3,compared to volume equations.Similarly,at the plot level,RMSE was reduced by 42% and MAB by 40%.The model performed well for species with regular forms.However,species with irregular tapers exhibited higher errors,reflecting the challenges of modeling stem forms of mixed species.The use of CRP proved valuable,providing high-resolution diameter measurements that improved model parameterization.This study underscores the importance of advanced data collection methods for enhancing taper model accuracy and suggests that further species-specific adjustments are needed to improve performance for species with irregular forms.The findings support the broader application of taper equations for improving stem volume estimates in savanna ecosystems,contributing to better forest management and resource monitoring practices.
文摘BACKGROUND Cardiac sarcoidosis(CS)is an infiltrative disease with manifestations such as nonsustained ventricular tachycardia(NSVT)and heart failure(HF).Antiphospholipid syndrome(APS)and antiphospholipid positivity(APP)are prothrombotic phenomena which elevate risk for thromboembolism.CS with active systemic sarcoid and APS/APP is a rare combination of diseases.CASE SUMMARY A 54 year old male with HF presented with several cardiopulmonary symptoms.Chest imaging showed bilateral patchy and reticulonodular infiltrates.Subsequent lung biopsy confirmed pulmonary sarcoidosis.Positron emission tomography revealed active systemic sarcoidosis(SS)and fibrotic CS.Positive antiphospholipid antibodies without thromboembolism confirmed APP.HF and APP were managed with medical therapy.Fibrotic CS and NSVT required permanent cardiac device and antiarrhythmic therapy.SS was managed with early taper of steroids and transition to biologics.CONCLUSION Fibrotic CS with active SS and APS/APP has not been previously described in literature.This case utilized a modified approach for the management of this combination of diseases.As immunosuppressants such as steroids have limited utility in fibrotic sarcoidosis and a potential for thromboembolic complications in the presence of APP,an accelerated transition to non-thrombotic immunosuppressants can be advantageous in the long term treatment of this combination of diseases.
基金supported by the Airlangga University through Mandate Research Grant(Nos.216/UN3.15/PT/2022 and 217/UN3.15/PT/2022)。
文摘This paper presents a biosensor utilizing a whispering gallery mode(WGM)resonator characterized by azimuthal symmetry and crescent-shaped coatings of silver.The study investigates the impact of the coupling gap on the extinction ratio and Q-factor of the setup.The resonator is coated with silver in crescent shapes,ranging from 40 nm to 65 nm in thickness.Coupling is achieved with a silica waveguide,simulating the tapered fiber coupling method.Notably,the resonator exhibits a maximum sensitivity of 220 nm/RIU when coated with 55-nm-thick silver in conjunction with a 4-nm-thick layer of thiol-tethered deoxyribonucleic acid(DNA).This biosensor holds promise for biomolecule detection applications.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFB2803100)the National Major Scientific Research Instrument Development Project(Grant No.22127901)+6 种基金the National Natural Science Foundation of China (Grant No.62305367)the Shanghai Natural Science Foundation (Grant No.25ZR1401379)the Natural Science Foundation of Zhejiang Province,China (Grant No.LZ24F050001)the Innovation Program for Quantum Science and Technology (Grant Nos.2021ZD0301500 and 2021ZD0303200)the National Natural Science Foundation of China (Grant Nos.T2325022,U23A2074,62061160487,and 62275240)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-049)the Fundamental Research Funds for the Central Universities。
文摘Quantum photonic integrated circuits offer enhanced stability and scalability for quantum communications,sensing, and computing. Transverse modes in multimode waveguides enable high-dimensional scalability and versatile photon manipulation, but practical adoption requires compact and fabrication-tolerant quantum interference devices. Here, we present an ultra-compact taper-stepped beamsplitter that enables quantum interference between photon pairs in different transverse modes, and cascade it to realize NOON state interferometry. We experimentally achieve high visibilities of 93.9% for HOM interference and 86.5% for NOON state interference,demonstrating that efficient mode interference with active tuning can be realized on this platform.
基金supported by the Doctoral Fund Project of the Ministry of Education(No.20130061110060 class tutors)the Post-Doctoral Fund Project(No.2015M571366)+1 种基金the National Natural Science Foundation of China(No.41174097)US DoD ARO Project"Advanced Mathematical Algorithm"(No.W911NF-11-2-0046)
文摘The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.
文摘The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for controlling the four-axis motion is proposed. The algorithm is applicable to both the invariable and variable taper machining. Motion loci of the machining platform and the wire guiding head are deduced by the algorithm according to the bottom surface locus of the workpiece and the taper angle. The algorithm is used in the CNC system of the four-axis WEDM machine tool and confirmed to be effective.
文摘An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is ~40% shorter in length.The device exhibits uniformity of 1 3dB and excess loss of 2 5dB.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFB2203001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)the National Natural Science Foundation of China(Grant No.61805232)。
文摘Since the advent of three-dimensional photonic integrated circuits,the realization of efficient and compact optical interconnection between layers has become an important development direction.A vertical interlayer coupler between two silicon layers is presented in this paper.The coupling principle of the directional coupler is analyzed,and the traditional method of using a pair of vertically overlapping inverse taper structures is improved.For the coupling of two rectangular waveguide layers,a pair of nonlinear tapers with offset along the transmission direction is demonstrated.For the coupling of two ridge waveguide layers,a nonlinear taper in each layer is used to achieve high coupling efficiency.The simulation results show that the coupling efficiency of the two structures can reach more than 90%in a wavelength range from 1500 nm to 1650 nm.Moreover,the crosstalk is reduced to less than-50 d B by using multimode waveguides at intersections.The vertical interlayer coupler with a nonlinear taper is expected to realize the miniaturization and dense integration of photonic integrated chips.
文摘A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a tapered rib core region and a double cladding region.Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region.The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular.A novel,easy method of fabricating tapered rib spot size converter based on silicon on insulator material is proposed.