This Letter presents intrinsic Fabry–Perot interferometers in the fiber tapers fabricated by the femtosecond laser micromachining technique. The sensing of temperatures as high as 1000°C based on the fiber devic...This Letter presents intrinsic Fabry–Perot interferometers in the fiber tapers fabricated by the femtosecond laser micromachining technique. The sensing of temperatures as high as 1000°C based on the fiber device is characterized, with a sensitivity of 15.28 pm∕°C. A nearly linear refractive index sensing is also obtained by using the fringe visibility to characterize, with a sensitivity of 73.05 dB∕RIU. These intrinsic Fabry–Perot interferometers in fiber tapers may be useful in applications of high-temperature and linear refractive index sensing.展开更多
A mode transformer based on the quasi-vertical taper is designed to enable high coupling efficiency for interboardlevel optical interconnects involving single-mode polymer waveguides and standard single-mode fibers. A...A mode transformer based on the quasi-vertical taper is designed to enable high coupling efficiency for interboardlevel optical interconnects involving single-mode polymer waveguides and standard single-mode fibers. A triangular region fabricated above the waveguide is adopted to adiabatically transform the mode from the fiber into the polymer waveguide. The effects of the geometrical parameters of the taper, including width, height, tip width,etc., on the coupling efficiency are numerically investigated. Based on this, a quasi-vertical taper for the polymer rib waveguide system is designed, fabricated, and characterized. Coupling losses of 1.79 0.30 and 2.23 0.31 dB per coupler for the quasi-TM and quasi-TE mode, respectively, are measured across the optical communication C and L bands(1535 to 1610 nm). Low-cost packaging, leading to widespread utilization of polymeric photonicdevices, is envisioned for optical interconnect applications.展开更多
Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF ...Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.展开更多
In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to con...In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.展开更多
Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve b...Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.展开更多
Stem volume estimation is crucial in forest ecology and management,particularly for timber harvesting strategies and carbon stock assessments.This study aimed to develop a variable-exponent taper equation specifically...Stem volume estimation is crucial in forest ecology and management,particularly for timber harvesting strategies and carbon stock assessments.This study aimed to develop a variable-exponent taper equation specifically tailored to savanna tree species using close-range photogrammetry(CRP)data and to evaluate its performance against conventional volume equations for stem volume estimation.A dataset of 30 trees across five dominant savanna species was used to fit the taper model,which was validated using a separate dataset of 322 trees from 14 species.The results demonstrated significant improvements in volume estimation accuracy when using the taper equation.At the tree level,the root mean square error(RMSE)decreased by 47%,from 598 to 319 dm^(3),and the mean absolute bias(MAB)by 48%,from 328 to 172 dm3,compared to volume equations.Similarly,at the plot level,RMSE was reduced by 42% and MAB by 40%.The model performed well for species with regular forms.However,species with irregular tapers exhibited higher errors,reflecting the challenges of modeling stem forms of mixed species.The use of CRP proved valuable,providing high-resolution diameter measurements that improved model parameterization.This study underscores the importance of advanced data collection methods for enhancing taper model accuracy and suggests that further species-specific adjustments are needed to improve performance for species with irregular forms.The findings support the broader application of taper equations for improving stem volume estimates in savanna ecosystems,contributing to better forest management and resource monitoring practices.展开更多
A two-dimensional finite element model was used to analyze the thermal and mechanical behavior during solidification of the strand in a continuous bloom casting mold. The coupled heat transfer and deformation were ana...A two-dimensional finite element model was used to analyze the thermal and mechanical behavior during solidification of the strand in a continuous bloom casting mold. The coupled heat transfer and deformation were analyzed to simulate the formation of the air gap between the mold and the strand. The model was used to investigate the influence of mold taper on the temperature and stress distributions in the strand. The results show that the air gap mainly forms around the strand corner, causing a hotter and thinner solidifying shell in this region. The mold taper partially compensates for the strand shell shrinkage and reduces the influence of the air gap on the heat transfer. The mold taper compresses the shell and changes the stress state around the strand corner region. As the strand moves down into the mold, the mold constraint causes compressive stress beneath the corner surface, which reduces the hot tear that forms on the strand.展开更多
Suspended core fiber tapers with different cross sections (with diameters from 70μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a m...Suspended core fiber tapers with different cross sections (with diameters from 70μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change Occurs.展开更多
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficien...Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficiency at an altitude of 22 km,a certain near-space composite propeller is designed as a long and slender aerodynamic shape with a 10 m diameter,which brings many challenges to the composite structure design.The initial design is obtained by the composite structure variable stiffness design method using based on fixed region division blending model.However,it weighs 23.142 kg,exceeding the required 20 kg.In order to meet the structural design requirements of the propeller,a variable stiffness design method using the adaptive region division blending model is proposed in this paper.Compared with the methods using the fixed region division blending model,this method optimizes region division,stacking thickness and stacking sequence in a single level,considering the coupling effect among them.Through a more refined region division,this method can provide a more optimal design for composite tapered structures.Additionally,to improve the efficiency of optimization subjected to manufacturing constraints,a hierarchical penalty function is proposed to quickly filter out the solutions that do not meet manufacturing constraints.The above methods combined with a Genetic Algorithm(GA)using specific encoding are adopted to optimize the near-space composite propeller.The optimal design of the structure weighs 18.831 kg,with all manufacturing constraints and all structural response constraints being satisfied.Compared with the initial design,the optimal design has a more refined region division,and achieves a weight reduction of 18.6%.This demonstrates that a refined region division can significantly improve the mechanical performance of the composite tapered structure.展开更多
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f...This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, ...The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.展开更多
The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for cont...The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for controlling the four-axis motion is proposed. The algorithm is applicable to both the invariable and variable taper machining. Motion loci of the machining platform and the wire guiding head are deduced by the algorithm according to the bottom surface locus of the workpiece and the taper angle. The algorithm is used in the CNC system of the four-axis WEDM machine tool and confirmed to be effective.展开更多
An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is...An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is ~40% shorter in length.The device exhibits uniformity of 1 3dB and excess loss of 2 5dB.展开更多
Since the advent of three-dimensional photonic integrated circuits,the realization of efficient and compact optical interconnection between layers has become an important development direction.A vertical interlayer co...Since the advent of three-dimensional photonic integrated circuits,the realization of efficient and compact optical interconnection between layers has become an important development direction.A vertical interlayer coupler between two silicon layers is presented in this paper.The coupling principle of the directional coupler is analyzed,and the traditional method of using a pair of vertically overlapping inverse taper structures is improved.For the coupling of two rectangular waveguide layers,a pair of nonlinear tapers with offset along the transmission direction is demonstrated.For the coupling of two ridge waveguide layers,a nonlinear taper in each layer is used to achieve high coupling efficiency.The simulation results show that the coupling efficiency of the two structures can reach more than 90%in a wavelength range from 1500 nm to 1650 nm.Moreover,the crosstalk is reduced to less than-50 d B by using multimode waveguides at intersections.The vertical interlayer coupler with a nonlinear taper is expected to realize the miniaturization and dense integration of photonic integrated chips.展开更多
A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a ta...A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a tapered rib core region and a double cladding region.Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region.The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular.A novel,easy method of fabricating tapered rib spot size converter based on silicon on insulator material is proposed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61377081 and 61007035)the Chen Guang project by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(No.12CG48)the Science and Technology Commission of Shanghai Municipality(STCSM)(No.14511105602)
文摘This Letter presents intrinsic Fabry–Perot interferometers in the fiber tapers fabricated by the femtosecond laser micromachining technique. The sensing of temperatures as high as 1000°C based on the fiber device is characterized, with a sensitivity of 15.28 pm∕°C. A nearly linear refractive index sensing is also obtained by using the fringe visibility to characterize, with a sensitivity of 73.05 dB∕RIU. These intrinsic Fabry–Perot interferometers in fiber tapers may be useful in applications of high-temperature and linear refractive index sensing.
基金supported by Air Force Office of Scientific Research (AFOSR) for supporting this work under the Small Business Technology Transfer Research (STTR) program (grant no. FA9550-14-C-0001)
文摘A mode transformer based on the quasi-vertical taper is designed to enable high coupling efficiency for interboardlevel optical interconnects involving single-mode polymer waveguides and standard single-mode fibers. A triangular region fabricated above the waveguide is adopted to adiabatically transform the mode from the fiber into the polymer waveguide. The effects of the geometrical parameters of the taper, including width, height, tip width,etc., on the coupling efficiency are numerically investigated. Based on this, a quasi-vertical taper for the polymer rib waveguide system is designed, fabricated, and characterized. Coupling losses of 1.79 0.30 and 2.23 0.31 dB per coupler for the quasi-TM and quasi-TE mode, respectively, are measured across the optical communication C and L bands(1535 to 1610 nm). Low-cost packaging, leading to widespread utilization of polymeric photonicdevices, is envisioned for optical interconnect applications.
基金the National Science and Technology Major Project of China(No.2019-VII0017e0158)the National Natural Science Foundation of China(No.U21A20131)+1 种基金the Industry-University Research Cooperation Project,China(No.HFZL2020CXY025)the National Key Laboratory of Science and Technology on Helicopter Transmission,China(No.HTL-O-21G05).
文摘Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.
基金financial supports from National Natural Science Foundation of China(62175023).
文摘In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.
文摘Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.
基金partially funded by the International Foundation for Science(Grant No:I-1-D-6066-1).
文摘Stem volume estimation is crucial in forest ecology and management,particularly for timber harvesting strategies and carbon stock assessments.This study aimed to develop a variable-exponent taper equation specifically tailored to savanna tree species using close-range photogrammetry(CRP)data and to evaluate its performance against conventional volume equations for stem volume estimation.A dataset of 30 trees across five dominant savanna species was used to fit the taper model,which was validated using a separate dataset of 322 trees from 14 species.The results demonstrated significant improvements in volume estimation accuracy when using the taper equation.At the tree level,the root mean square error(RMSE)decreased by 47%,from 598 to 319 dm^(3),and the mean absolute bias(MAB)by 48%,from 328 to 172 dm3,compared to volume equations.Similarly,at the plot level,RMSE was reduced by 42% and MAB by 40%.The model performed well for species with regular forms.However,species with irregular tapers exhibited higher errors,reflecting the challenges of modeling stem forms of mixed species.The use of CRP proved valuable,providing high-resolution diameter measurements that improved model parameterization.This study underscores the importance of advanced data collection methods for enhancing taper model accuracy and suggests that further species-specific adjustments are needed to improve performance for species with irregular forms.The findings support the broader application of taper equations for improving stem volume estimates in savanna ecosystems,contributing to better forest management and resource monitoring practices.
基金the Iron and Steel Research Joint Fund of the National Natural Science Foundation of China (No. 50474088)Baoshan Steel Complex of Shanghai in China
文摘A two-dimensional finite element model was used to analyze the thermal and mechanical behavior during solidification of the strand in a continuous bloom casting mold. The coupled heat transfer and deformation were analyzed to simulate the formation of the air gap between the mold and the strand. The model was used to investigate the influence of mold taper on the temperature and stress distributions in the strand. The results show that the air gap mainly forms around the strand corner, causing a hotter and thinner solidifying shell in this region. The mold taper partially compensates for the strand shell shrinkage and reduces the influence of the air gap on the heat transfer. The mold taper compresses the shell and changes the stress state around the strand corner region. As the strand moves down into the mold, the mold constraint causes compressive stress beneath the corner surface, which reduces the hot tear that forms on the strand.
文摘Suspended core fiber tapers with different cross sections (with diameters from 70μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change Occurs.
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
基金This study was co-supported by stable funding from the National Key Laboratory of Aerofoil and Grille Aerodynamics,China.
文摘Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficiency at an altitude of 22 km,a certain near-space composite propeller is designed as a long and slender aerodynamic shape with a 10 m diameter,which brings many challenges to the composite structure design.The initial design is obtained by the composite structure variable stiffness design method using based on fixed region division blending model.However,it weighs 23.142 kg,exceeding the required 20 kg.In order to meet the structural design requirements of the propeller,a variable stiffness design method using the adaptive region division blending model is proposed in this paper.Compared with the methods using the fixed region division blending model,this method optimizes region division,stacking thickness and stacking sequence in a single level,considering the coupling effect among them.Through a more refined region division,this method can provide a more optimal design for composite tapered structures.Additionally,to improve the efficiency of optimization subjected to manufacturing constraints,a hierarchical penalty function is proposed to quickly filter out the solutions that do not meet manufacturing constraints.The above methods combined with a Genetic Algorithm(GA)using specific encoding are adopted to optimize the near-space composite propeller.The optimal design of the structure weighs 18.831 kg,with all manufacturing constraints and all structural response constraints being satisfied.Compared with the initial design,the optimal design has a more refined region division,and achieves a weight reduction of 18.6%.This demonstrates that a refined region division can significantly improve the mechanical performance of the composite tapered structure.
基金National Natural Science Foundation of China under Grand No.51808190the Central Government Guides Local Science and Technology Development Fund Projects under Grand No.XZ202301YD0019C+2 种基金the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education under Grand No.2022P04the Central University Basic Research Fund of China under Grand No.B220202017。
文摘This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金supported by the Doctoral Fund Project of the Ministry of Education(No.20130061110060 class tutors)the Post-Doctoral Fund Project(No.2015M571366)+1 种基金the National Natural Science Foundation of China(No.41174097)US DoD ARO Project"Advanced Mathematical Algorithm"(No.W911NF-11-2-0046)
文摘The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.
文摘The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for controlling the four-axis motion is proposed. The algorithm is applicable to both the invariable and variable taper machining. Motion loci of the machining platform and the wire guiding head are deduced by the algorithm according to the bottom surface locus of the workpiece and the taper angle. The algorithm is used in the CNC system of the four-axis WEDM machine tool and confirmed to be effective.
文摘An ultracompact 3 dB coupler is designed and fabricated in silicon on insulator,based on 1×2 line tapered multimode interference (MMI) coupler.Comparing with the conventional straight MMI coupler,the device is ~40% shorter in length.The device exhibits uniformity of 1 3dB and excess loss of 2 5dB.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFB2203001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)the National Natural Science Foundation of China(Grant No.61805232)。
文摘Since the advent of three-dimensional photonic integrated circuits,the realization of efficient and compact optical interconnection between layers has become an important development direction.A vertical interlayer coupler between two silicon layers is presented in this paper.The coupling principle of the directional coupler is analyzed,and the traditional method of using a pair of vertically overlapping inverse taper structures is improved.For the coupling of two rectangular waveguide layers,a pair of nonlinear tapers with offset along the transmission direction is demonstrated.For the coupling of two ridge waveguide layers,a nonlinear taper in each layer is used to achieve high coupling efficiency.The simulation results show that the coupling efficiency of the two structures can reach more than 90%in a wavelength range from 1500 nm to 1650 nm.Moreover,the crosstalk is reduced to less than-50 d B by using multimode waveguides at intersections.The vertical interlayer coupler with a nonlinear taper is expected to realize the miniaturization and dense integration of photonic integrated chips.
文摘A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a tapered rib core region and a double cladding region.Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region.The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular.A novel,easy method of fabricating tapered rib spot size converter based on silicon on insulator material is proposed.