In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction r...In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction result in difficulties when the SPA is clarified.CFD numerical methodology was applied to simulate internal flow field and performance of the low speed scraper based on Mixture solidliquid two-phase flow model.Sediment deposition was generated by loading solid particles at the bottom of clarifying vessel.The moving mesh and RNG k-εmodel were used to simulate the rotational turbulent flow in clarifying tank.Variables studied,amongst others,were the scraper rotation speed and the mounting height,which could affect the solid suspension height.Features of flow field and solid volume fraction distribution in computational domain were presented and analyzed.The numerical reports of the scraper torque and velocities of inlet and outlet filed were obtained.It seems the torque value of rotatio-nal axis and particle suspending height augment with an increasing rotating speed.Meanwhile,a high revolving speed is good for the deposition discharge.The particle fraction distribution in meridional surface and horizontal surface at fixed rotation speed were analyzed to determine the corresponding optimal installation height.The simulating results reflect the flow field is marginally stirred by the scraper and proper working parameters are obtained,in which case the comprehensive properties of the scraper and the clarifying tank are superior.展开更多
The study of dynamics of tank vehicles carrying liquid fuel cargo is complex. The forces and moments due to liquid sloshing create serious problems related to the instability of tank vehicles. In this paper, a complet...The study of dynamics of tank vehicles carrying liquid fuel cargo is complex. The forces and moments due to liquid sloshing create serious problems related to the instability of tank vehicles. In this paper, a complete analytical model of a modular tank vehicle has been developed. The model included all the vehicle systems and subsystems. Simulation results obtained using this model was compared with those obtained using the popular TruckSim software. The comparison proved the validity of the assumptions used in the analytical model and showed a good correlation under single or double lane change and turning manoeuvers.展开更多
In this paper, the relationship model between the oil volume and the vertically tilting parameter (α), the horizontally tilting parameter (β) and the displayed height of oil (h*) is first constructed with the tilted...In this paper, the relationship model between the oil volume and the vertically tilting parameter (α), the horizontally tilting parameter (β) and the displayed height of oil (h*) is first constructed with the tilted oil tank. Then, based on the data of the oil output volume at different time of day, an optimization model of oil-volume marking with tilted oil tank is established. Finally, parameters α = 2.2° and β = 3.05° are estimated by using nonlinear least squares method and the marking number of the tank-volume meter is given.展开更多
The radial and axial distribution of mean 1iquid velocity were measured by a.hot-filmanemometer at the impeller region in an aerated and stirred tank 0.287m in diameter.The tangentialjet model for impeller discharge f...The radial and axial distribution of mean 1iquid velocity were measured by a.hot-filmanemometer at the impeller region in an aerated and stirred tank 0.287m in diameter.The tangentialjet model for impeller discharge flow used for single phase flow was modified to conform with thecharacteristics of gas-liquid flow.The radial and axial velocity profiles at the impeller region in thegas-liquid stirred tank were calculated by the model The results predicted by the model were in goodagreement with those obtained in experiment.展开更多
A dynamic experiment for oil dispersion into a water column was performed with a 21 m long, 0.5 m wide, and 1 m high wind-driven wave tank. At wind velocity between 6-12 m/s and with the oil slide kept constant (about...A dynamic experiment for oil dispersion into a water column was performed with a 21 m long, 0.5 m wide, and 1 m high wind-driven wave tank. At wind velocity between 6-12 m/s and with the oil slide kept constant (about 1 um), the rate of the oil content increase in the water column could be approximated from the difference between the dispersion rate (R) of the oil slick and the coagulation rate (R’) of the dispersed oil slick. Assuming the coagulation rate is directly proportional to the concentration of the water dispersed oil slick (i. e. R’ =KC),, the integral form of the dynamic model can be expressed as C=R*[1-exp(-K*t)]/K and parameters R and K can be regressed with a computer. The relative deviation of model results from the experimental data was mainly less than 10%. The oil slick dispersion rate (R) had exponential relationship with the wind velocity (V), and can be fitted with a formula R=A*(U+1)B.The fitted constant of the coagulation rate, K(0.8-3.0* 10-3 min-1) did not have significant展开更多
The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water th...The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.展开更多
为研究浮式生产储卸油装置(floating production storage and offloading,FPSO)浮筒关键节点的疲劳强度问题,本文基于FPSO三舱段、浮筒锥体、浮筒转塔、锥形对接模块(mating cone module,MCM)的整体模型,通过应力分析确定出应力较为集...为研究浮式生产储卸油装置(floating production storage and offloading,FPSO)浮筒关键节点的疲劳强度问题,本文基于FPSO三舱段、浮筒锥体、浮筒转塔、锥形对接模块(mating cone module,MCM)的整体模型,通过应力分析确定出应力较为集中的区域并作为热点,建立精细化网格的子模型以获得热点应力。基于力传递函数的方法,根据规范开展浮筒和MCM的疲劳简化分析,研究系泊和立管载荷对浮筒局部结构的疲劳影响。结果表明,浮筒锥体、浮筒转塔和MCM中关键节点的疲劳强度均满足设计疲劳强度要求,其中最薄弱的热点结构HS1的疲劳寿命为3262 a,大于20 a的设计寿命,满足FPSO单点系泊浮筒的设计预期要求。展开更多
基金Graduate Research and Innovation Program in Jiangsu Province(KYZZ16_0286)
文摘In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction result in difficulties when the SPA is clarified.CFD numerical methodology was applied to simulate internal flow field and performance of the low speed scraper based on Mixture solidliquid two-phase flow model.Sediment deposition was generated by loading solid particles at the bottom of clarifying vessel.The moving mesh and RNG k-εmodel were used to simulate the rotational turbulent flow in clarifying tank.Variables studied,amongst others,were the scraper rotation speed and the mounting height,which could affect the solid suspension height.Features of flow field and solid volume fraction distribution in computational domain were presented and analyzed.The numerical reports of the scraper torque and velocities of inlet and outlet filed were obtained.It seems the torque value of rotatio-nal axis and particle suspending height augment with an increasing rotating speed.Meanwhile,a high revolving speed is good for the deposition discharge.The particle fraction distribution in meridional surface and horizontal surface at fixed rotation speed were analyzed to determine the corresponding optimal installation height.The simulating results reflect the flow field is marginally stirred by the scraper and proper working parameters are obtained,in which case the comprehensive properties of the scraper and the clarifying tank are superior.
文摘The study of dynamics of tank vehicles carrying liquid fuel cargo is complex. The forces and moments due to liquid sloshing create serious problems related to the instability of tank vehicles. In this paper, a complete analytical model of a modular tank vehicle has been developed. The model included all the vehicle systems and subsystems. Simulation results obtained using this model was compared with those obtained using the popular TruckSim software. The comparison proved the validity of the assumptions used in the analytical model and showed a good correlation under single or double lane change and turning manoeuvers.
文摘In this paper, the relationship model between the oil volume and the vertically tilting parameter (α), the horizontally tilting parameter (β) and the displayed height of oil (h*) is first constructed with the tilted oil tank. Then, based on the data of the oil output volume at different time of day, an optimization model of oil-volume marking with tilted oil tank is established. Finally, parameters α = 2.2° and β = 3.05° are estimated by using nonlinear least squares method and the marking number of the tank-volume meter is given.
文摘The radial and axial distribution of mean 1iquid velocity were measured by a.hot-filmanemometer at the impeller region in an aerated and stirred tank 0.287m in diameter.The tangentialjet model for impeller discharge flow used for single phase flow was modified to conform with thecharacteristics of gas-liquid flow.The radial and axial velocity profiles at the impeller region in thegas-liquid stirred tank were calculated by the model The results predicted by the model were in goodagreement with those obtained in experiment.
文摘A dynamic experiment for oil dispersion into a water column was performed with a 21 m long, 0.5 m wide, and 1 m high wind-driven wave tank. At wind velocity between 6-12 m/s and with the oil slide kept constant (about 1 um), the rate of the oil content increase in the water column could be approximated from the difference between the dispersion rate (R) of the oil slick and the coagulation rate (R’) of the dispersed oil slick. Assuming the coagulation rate is directly proportional to the concentration of the water dispersed oil slick (i. e. R’ =KC),, the integral form of the dynamic model can be expressed as C=R*[1-exp(-K*t)]/K and parameters R and K can be regressed with a computer. The relative deviation of model results from the experimental data was mainly less than 10%. The oil slick dispersion rate (R) had exponential relationship with the wind velocity (V), and can be fitted with a formula R=A*(U+1)B.The fitted constant of the coagulation rate, K(0.8-3.0* 10-3 min-1) did not have significant
文摘The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.
文摘为研究浮式生产储卸油装置(floating production storage and offloading,FPSO)浮筒关键节点的疲劳强度问题,本文基于FPSO三舱段、浮筒锥体、浮筒转塔、锥形对接模块(mating cone module,MCM)的整体模型,通过应力分析确定出应力较为集中的区域并作为热点,建立精细化网格的子模型以获得热点应力。基于力传递函数的方法,根据规范开展浮筒和MCM的疲劳简化分析,研究系泊和立管载荷对浮筒局部结构的疲劳影响。结果表明,浮筒锥体、浮筒转塔和MCM中关键节点的疲劳强度均满足设计疲劳强度要求,其中最薄弱的热点结构HS1的疲劳寿命为3262 a,大于20 a的设计寿命,满足FPSO单点系泊浮筒的设计预期要求。