为了提高滚动轴承的故障诊断率,提出了一种基于高阶谱(high order spectrum, HOS)和Tamura纹理特征相结合的故障诊断方法。首先,通过高阶谱方法将滚动轴承故障振动信号的冲击提取出来;然后,对高阶谱进行处理得到二维等高线图;最后依据...为了提高滚动轴承的故障诊断率,提出了一种基于高阶谱(high order spectrum, HOS)和Tamura纹理特征相结合的故障诊断方法。首先,通过高阶谱方法将滚动轴承故障振动信号的冲击提取出来;然后,对高阶谱进行处理得到二维等高线图;最后依据轴承故障相同时等高线图具有相似性以及不同时具有差异性这一特性,采用基于人类视觉感知的Tamura纹理描述方法提取特征参数后输入多分类支持向量机(support vector machines, SVM)中进行分类。结果表明:高阶谱结合Tamura纹理特征的滚动轴承故障诊断方法在较少特征参数下故障识别准确率能达到较高的精度,对于故障尺寸不同的混合振动信号识别准确率稳定,诊断效果良好。展开更多