Chalcopyrite is often intergrown with talc,which,after grinding,forms ultrafine particles(<10μm)that readily coat chalcopyrite surfaces,hindering flotation and causing significant losses in tailings.This study eva...Chalcopyrite is often intergrown with talc,which,after grinding,forms ultrafine particles(<10μm)that readily coat chalcopyrite surfaces,hindering flotation and causing significant losses in tailings.This study evaluates polyvinyl acetate(PVAc),a thermoplastic polymer,as a selective flocculant to enhance reverse flot ation separation of chalcopyrite from ultrafine talc.Flotation tests showed that at a PVAc dosage of 40 mg/L,talc can be effectively and selectively removed,enabling efficient separation.Laser particle size analysis and scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)confirmed that PVAc promotes selective talc aggregation without affecting chalcopyrite.X-ray photoelectron spectroscopy(XPS)and density functional theory(DFT)calculations revealed that hydrogen bonding between PVAc ester groups and surface hydroxyls on talc drives the flocculation,while chalcopyrite lacks suitable binding sites.PVAc adsorption also enhances talc hydrophobicity.Furthermore,particle-bubble coverage angle measurements and extended Derjaguin-Landau-Verwey-Overbeek(DLVO)theory theoretical calculations demonstrated that PVAc-induced flocculation increases attractive interactions between talc and bubbles,shifting the total interaction energy from repulsive to attractive and promoting bubble-particle attachment.This study clarifies the selective adsorption and flocculation mechanisms of PVAc and reveals the coupling of flocculation and flotation of ultrafine talc from a particle-bubble capture perspective,while expanding the potential of ester-based polymers for ultrafine mineral recovery.展开更多
The rapid advancement of superalloy melting technology has increased the demands on crucible materials.Y_(2)O_(3) is a promising candidate for nickel-based superalloy melting due to its outstanding high-temperature st...The rapid advancement of superalloy melting technology has increased the demands on crucible materials.Y_(2)O_(3) is a promising candidate for nickel-based superalloy melting due to its outstanding high-temperature stability and non-wetting behavior with various alloys.However,its poor sintering performance limits its development.High-density Y_(2)O_(3) ceramics were successfully prepared via pressureless sintering at 1600℃ in a carbon-embedded atmosphere with talc powder as an additive.The resulting ceramics achieved optimal properties,including a bulk density of 4.27 g cm^(−3),apparent porosity of 1.1%,and cold compressive strength of 311.27 MPa.The talc powder introduced a liquid phase during sintering,which accelerated mass transfer and promoted grain growth and densification.During cooling,this liquid phase remained at the grain boundaries and acted as an intergranular bonding agent,strengthening grain cohesion.Nevertheless,excessive liquid phase hindered grain growth,negatively affecting sintering.Additionally,the extremely low porosity and the formation of the Mg_(2)SiO_(4) phase reduced the residual strength retention ratio of the Y_(2)O_(3) ceramic after thermal shock.展开更多
Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble si...Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.展开更多
The melt memory effect is a widely observed phenomenon in semi-crystalline polymers. In practical applications, various additives are usually introduced into polymers, which may affect their melt memory behavior. In t...The melt memory effect is a widely observed phenomenon in semi-crystalline polymers. In practical applications, various additives are usually introduced into polymers, which may affect their melt memory behavior. In this work, the effect of talc on the melt memory effect of metallocene-made isotactic polypropylene(M-PP) was investigated in detail by using the differential scanning calorimetry. The results indicated that the introduction of talc significantly strengthened the melt memory effect of M-PP. Specifically, the upper limit temperature of Domain II increased from 161 ℃ to 174 ℃, resulting in a substantial widening of the temperature range of Domain IIa from 1 ℃ to 14 ℃. Analysis of the crystal orientation of the M-PP containing talc cooled from various Ts suggested that the remarkably enhanced melt memory effect could be ascribed to the stabilization of oriented nuclei facilitated by talc. This stabilizing effect was likely attributable to the prefreezing effect or the sorption interaction between talc and the M-PP chains.展开更多
This study explores the development of WPCs(wood-plastic composites)using waste LDPE(low-density polyethylene)and ebony wood sawdust to propose a sustainable solution to waste accumulation.The effect of sawdust partic...This study explores the development of WPCs(wood-plastic composites)using waste LDPE(low-density polyethylene)and ebony wood sawdust to propose a sustainable solution to waste accumulation.The effect of sawdust particle size and the addition of talc as a coupling agent on the mechanical properties of the composites was examined in detail.The results show that increasing the particle size of the sawdust enhances the MOE(modulus of elasticity)and MOR(modulus of rupture)of the composites.The flexural MOE increases by 195%from the PM(plastic matrix)to composites with the coarsest sawdust,the compressive MOE by 72%,and the tensile MOE by 205%.Similarly,the flexural MOR increases by 28%,the tensile MOR by 42%,but the compressive MOR decreases slightly by 7%.The introduction of talc consistently increased the MOE,with an average improvement of 14%in flexion and 10%in tension for the various composite formulations,although it led to a decrease in compression.The MOR was also enhanced by the addition of talc,with an average increase of 16%across all tested loadings.These improvements suggest that talc can effectively serve as a coupling agent,optimizing the mechanical properties of WPCs for better use of recycled materials.展开更多
Extrusion-Compression molded isotactic polypropylene (iPP) composites containing 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% of talc filler were studied by scanning electron microscopy (SEM), simultaneous thermal analys...Extrusion-Compression molded isotactic polypropylene (iPP) composites containing 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% of talc filler were studied by scanning electron microscopy (SEM), simultaneous thermal analysis (STA) and physical testing. The scanning electron microscope (SEM) micrographs of neat iPP and composites with 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% talc content show that neat PP, 10 wt%, 20 wt%, and 30wt% talc composites surface is smooth in comparison to 40 wt% and 50 wt% talc composites. It is also observed that talc is dispersed uniformly in the matrix and this uniform dispersion is not decreased even with talc content as high as 30 wt% talc. The composites of 40 wt% and 50 wt% talc contain more crack, agglomerates or larger particles. Bulk density of the composites decreases with the increase of talc content. With the increase of percentage of talc and period of immersion, the water absorption (WA) increases. Thermal analyses indicate a considerable increase of thermal stability of the composites with filler addition.展开更多
Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite sh...Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite showed excellent floatability while talc was completely depressed by TG,thus realizing the flotation separation of the two minerals.X-ray photoelectron spectroscopy(XPS)analysis results showed that TG was adsorbed on molybdenite surface via chemisorption.The results of contact angle measurement,Fourier transform infrared(FTIR)spectroscopy,and time-of-flight secondary ion mass spectrometry(ToF-SIMS)indicated that the pre-adsorption of TG on molybdenite could not hinder the further chemisorption of PBX on molybdenite.Because PBX has no collecting ability on talc,the flotation separation of molybdenite and talc came true using PBX to collect molybdenite and TG to depress talc.展开更多
The depression behavior and mechanism of guar gum on talc-type scheelite flotation were systematically investigated by flotation experiments, adsorption tests, zeta-potential measurements, and infrared spectroscopic a...The depression behavior and mechanism of guar gum on talc-type scheelite flotation were systematically investigated by flotation experiments, adsorption tests, zeta-potential measurements, and infrared spectroscopic analyses. The flotation results for monominerals, mixed minerals, and actual mineral samples indicated that guar gum exhibited much higher selective depression for talc than for scheelite. Bench-scale closed-circuit tests showed that a tungsten concentrate with a WO_3 grade of 51.43% and a WO_3 recovery of 76.18% was obtained. Adsorption tests, zeta-potential measurements, and infrared spectral analyses confirmed that guar gum absorbed more strongly onto the talc surface than onto the scheelite surface because of chemisorption between guar gum and talc. This chemisorption is responsible for the guar gum's highly selective depression for talc and small depression for scheelite. The flotation results provide technical support for talc-type scheelite flotation.展开更多
Talc is a hydroxyled, magnesium-rich, layered silicate that has the ideal chemical formula Mg3Si4O10(OH)2. Due to its unique properties, such as softness, chemical inertness, high thermal stability, low electrical con...Talc is a hydroxyled, magnesium-rich, layered silicate that has the ideal chemical formula Mg3Si4O10(OH)2. Due to its unique properties, such as softness, chemical inertness, high thermal stability, low electrical conductivity, lamellar habit, adsorption properties, and occurrence of a wide range of particle sizes that can be easily reduced by milling and high specific surface area, talc is widely used in many industries. A stratified deposit of unusual black talc, an occurrence of talc estimated to be more than half a billion tons, was found exposed in the late Neoproterozoic Dengying Formation, located in Guangfeng County, Jiangxi Province, southeastern China. The ores occur primarily as oolitic structures (Fig. 1). The mineralogical and geochemical characteristics of the ores were investigated by using multiple techniques. The ores were found to mainly consist of talc (30%–70%), dolomite, quartz, and magnesite. Most of talc crystals are ultrafine (with an average crystallite size of smaller than 5 μm) and appear as irregular broken or distorted lamellar flakes. The total organic carbon (TOC) content of the black talc ore samples is generally lower than 1.0%. Electron-microprobe analysis (EPMA) revealed low contents of Na, K, Ca and Mn, Fe, Ni, Al in the talc oolitic particles. The talc ores have low contents of toxic elements and relatively high contents of Li and Zn. The infrared spectrum of the black talc is similar to that of white talc from Trimouns (Pyrenees, France), and their Brunauer–Emmett-Teller (BET) specific surface areas, ranging from 15.7 to 23.2 m2/g, is much higher than those of white talc (normally lower than 5.0 m2/g), which may be due to the small size of the talc crystals.展开更多
The grinding of ultra-fine talcum powder and its application in a polypropylene (PP) matrix were investigated. Ultra-fine talcum powder was prepared by adjusting the grinding parameters of the physical milling proce...The grinding of ultra-fine talcum powder and its application in a polypropylene (PP) matrix were investigated. Ultra-fine talcum powder was prepared by adjusting the grinding parameters of the physical milling process. The talcum powder exhibited polymodal distribution. The layered morphology of talcum particles in a horizontal sand mill was rarely damaged or destroyed. PP-talcum nanocomposites were prepared by melt blending using a twin-screw extruder. Nano talcum can be seen as a single particle, although it is not very apparent. The bending strength of talcum-filled PP was gradually increased by approximately 28%. The impact strength linearly decreased as the filler weight ratio increased. The overall maximum improvement in mechanical properties was recorded when the filler ratios increased from 15 wt% to 20 wt%.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52174239 and 52374259)the Program of China Scholarship Council(No.202406080114)Natural Sciences and Engineering Research Council of Canada(No.NSERC RGPIN 2024-04570).
文摘Chalcopyrite is often intergrown with talc,which,after grinding,forms ultrafine particles(<10μm)that readily coat chalcopyrite surfaces,hindering flotation and causing significant losses in tailings.This study evaluates polyvinyl acetate(PVAc),a thermoplastic polymer,as a selective flocculant to enhance reverse flot ation separation of chalcopyrite from ultrafine talc.Flotation tests showed that at a PVAc dosage of 40 mg/L,talc can be effectively and selectively removed,enabling efficient separation.Laser particle size analysis and scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)confirmed that PVAc promotes selective talc aggregation without affecting chalcopyrite.X-ray photoelectron spectroscopy(XPS)and density functional theory(DFT)calculations revealed that hydrogen bonding between PVAc ester groups and surface hydroxyls on talc drives the flocculation,while chalcopyrite lacks suitable binding sites.PVAc adsorption also enhances talc hydrophobicity.Furthermore,particle-bubble coverage angle measurements and extended Derjaguin-Landau-Verwey-Overbeek(DLVO)theory theoretical calculations demonstrated that PVAc-induced flocculation increases attractive interactions between talc and bubbles,shifting the total interaction energy from repulsive to attractive and promoting bubble-particle attachment.This study clarifies the selective adsorption and flocculation mechanisms of PVAc and reveals the coupling of flocculation and flotation of ultrafine talc from a particle-bubble capture perspective,while expanding the potential of ester-based polymers for ultrafine mineral recovery.
基金financially supported by the National Natural Science Foundation of China(No.U21A2057).
文摘The rapid advancement of superalloy melting technology has increased the demands on crucible materials.Y_(2)O_(3) is a promising candidate for nickel-based superalloy melting due to its outstanding high-temperature stability and non-wetting behavior with various alloys.However,its poor sintering performance limits its development.High-density Y_(2)O_(3) ceramics were successfully prepared via pressureless sintering at 1600℃ in a carbon-embedded atmosphere with talc powder as an additive.The resulting ceramics achieved optimal properties,including a bulk density of 4.27 g cm^(−3),apparent porosity of 1.1%,and cold compressive strength of 311.27 MPa.The talc powder introduced a liquid phase during sintering,which accelerated mass transfer and promoted grain growth and densification.During cooling,this liquid phase remained at the grain boundaries and acted as an intergranular bonding agent,strengthening grain cohesion.Nevertheless,excessive liquid phase hindered grain growth,negatively affecting sintering.Additionally,the extremely low porosity and the formation of the Mg_(2)SiO_(4) phase reduced the residual strength retention ratio of the Y_(2)O_(3) ceramic after thermal shock.
基金Project(ID42787)supported by the Istanbul Technical University,BAP(Scientific Research Project)Department,Turkey。
文摘Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.
基金financially supported by the National Natural Science Foundation of China (Nos. 51973037 and 52173056)PetroChina Company Limited,China。
文摘The melt memory effect is a widely observed phenomenon in semi-crystalline polymers. In practical applications, various additives are usually introduced into polymers, which may affect their melt memory behavior. In this work, the effect of talc on the melt memory effect of metallocene-made isotactic polypropylene(M-PP) was investigated in detail by using the differential scanning calorimetry. The results indicated that the introduction of talc significantly strengthened the melt memory effect of M-PP. Specifically, the upper limit temperature of Domain II increased from 161 ℃ to 174 ℃, resulting in a substantial widening of the temperature range of Domain IIa from 1 ℃ to 14 ℃. Analysis of the crystal orientation of the M-PP containing talc cooled from various Ts suggested that the remarkably enhanced melt memory effect could be ascribed to the stabilization of oriented nuclei facilitated by talc. This stabilizing effect was likely attributable to the prefreezing effect or the sorption interaction between talc and the M-PP chains.
文摘This study explores the development of WPCs(wood-plastic composites)using waste LDPE(low-density polyethylene)and ebony wood sawdust to propose a sustainable solution to waste accumulation.The effect of sawdust particle size and the addition of talc as a coupling agent on the mechanical properties of the composites was examined in detail.The results show that increasing the particle size of the sawdust enhances the MOE(modulus of elasticity)and MOR(modulus of rupture)of the composites.The flexural MOE increases by 195%from the PM(plastic matrix)to composites with the coarsest sawdust,the compressive MOE by 72%,and the tensile MOE by 205%.Similarly,the flexural MOR increases by 28%,the tensile MOR by 42%,but the compressive MOR decreases slightly by 7%.The introduction of talc consistently increased the MOE,with an average improvement of 14%in flexion and 10%in tension for the various composite formulations,although it led to a decrease in compression.The MOR was also enhanced by the addition of talc,with an average increase of 16%across all tested loadings.These improvements suggest that talc can effectively serve as a coupling agent,optimizing the mechanical properties of WPCs for better use of recycled materials.
文摘Extrusion-Compression molded isotactic polypropylene (iPP) composites containing 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% of talc filler were studied by scanning electron microscopy (SEM), simultaneous thermal analysis (STA) and physical testing. The scanning electron microscope (SEM) micrographs of neat iPP and composites with 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% talc content show that neat PP, 10 wt%, 20 wt%, and 30wt% talc composites surface is smooth in comparison to 40 wt% and 50 wt% talc composites. It is also observed that talc is dispersed uniformly in the matrix and this uniform dispersion is not decreased even with talc content as high as 30 wt% talc. The composites of 40 wt% and 50 wt% talc contain more crack, agglomerates or larger particles. Bulk density of the composites decreases with the increase of talc content. With the increase of percentage of talc and period of immersion, the water absorption (WA) increases. Thermal analyses indicate a considerable increase of thermal stability of the composites with filler addition.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51664020)the Natural Science Foundation of Jiangxi Province,China(No.20202ACBL214010)+1 种基金Open Foundation of State Key Laboratory of Mineral Processing,China(No.BGRIMM-KJSKL-2020-12)Open Foundation of Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources,China(No.2018TP1002).
文摘Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite showed excellent floatability while talc was completely depressed by TG,thus realizing the flotation separation of the two minerals.X-ray photoelectron spectroscopy(XPS)analysis results showed that TG was adsorbed on molybdenite surface via chemisorption.The results of contact angle measurement,Fourier transform infrared(FTIR)spectroscopy,and time-of-flight secondary ion mass spectrometry(ToF-SIMS)indicated that the pre-adsorption of TG on molybdenite could not hinder the further chemisorption of PBX on molybdenite.Because PBX has no collecting ability on talc,the flotation separation of molybdenite and talc came true using PBX to collect molybdenite and TG to depress talc.
基金financially supported by the National Natural Science Foundation of China (No.51404218)the National Key Technology R&D Program (No.2015BAB12B02)the Science and Technology Planning Project of Guangdong Province, China (No.2013B090800016)
文摘The depression behavior and mechanism of guar gum on talc-type scheelite flotation were systematically investigated by flotation experiments, adsorption tests, zeta-potential measurements, and infrared spectroscopic analyses. The flotation results for monominerals, mixed minerals, and actual mineral samples indicated that guar gum exhibited much higher selective depression for talc than for scheelite. Bench-scale closed-circuit tests showed that a tungsten concentrate with a WO_3 grade of 51.43% and a WO_3 recovery of 76.18% was obtained. Adsorption tests, zeta-potential measurements, and infrared spectral analyses confirmed that guar gum absorbed more strongly onto the talc surface than onto the scheelite surface because of chemisorption between guar gum and talc. This chemisorption is responsible for the guar gum's highly selective depression for talc and small depression for scheelite. The flotation results provide technical support for talc-type scheelite flotation.
文摘Talc is a hydroxyled, magnesium-rich, layered silicate that has the ideal chemical formula Mg3Si4O10(OH)2. Due to its unique properties, such as softness, chemical inertness, high thermal stability, low electrical conductivity, lamellar habit, adsorption properties, and occurrence of a wide range of particle sizes that can be easily reduced by milling and high specific surface area, talc is widely used in many industries. A stratified deposit of unusual black talc, an occurrence of talc estimated to be more than half a billion tons, was found exposed in the late Neoproterozoic Dengying Formation, located in Guangfeng County, Jiangxi Province, southeastern China. The ores occur primarily as oolitic structures (Fig. 1). The mineralogical and geochemical characteristics of the ores were investigated by using multiple techniques. The ores were found to mainly consist of talc (30%–70%), dolomite, quartz, and magnesite. Most of talc crystals are ultrafine (with an average crystallite size of smaller than 5 μm) and appear as irregular broken or distorted lamellar flakes. The total organic carbon (TOC) content of the black talc ore samples is generally lower than 1.0%. Electron-microprobe analysis (EPMA) revealed low contents of Na, K, Ca and Mn, Fe, Ni, Al in the talc oolitic particles. The talc ores have low contents of toxic elements and relatively high contents of Li and Zn. The infrared spectrum of the black talc is similar to that of white talc from Trimouns (Pyrenees, France), and their Brunauer–Emmett-Teller (BET) specific surface areas, ranging from 15.7 to 23.2 m2/g, is much higher than those of white talc (normally lower than 5.0 m2/g), which may be due to the small size of the talc crystals.
基金Funded by the Foundation of Shanghai Science and Technology Committee (Nos.10521100602, 10DZ2211400)Foundation of Guangdong Province (No.2011A090200082)China Postdoctoral Science Foundation, and Research Foundation for the Excellent Youth Scholars of Shanghai(No.SHU-10057)
文摘The grinding of ultra-fine talcum powder and its application in a polypropylene (PP) matrix were investigated. Ultra-fine talcum powder was prepared by adjusting the grinding parameters of the physical milling process. The talcum powder exhibited polymodal distribution. The layered morphology of talcum particles in a horizontal sand mill was rarely damaged or destroyed. PP-talcum nanocomposites were prepared by melt blending using a twin-screw extruder. Nano talcum can be seen as a single particle, although it is not very apparent. The bending strength of talcum-filled PP was gradually increased by approximately 28%. The impact strength linearly decreased as the filler weight ratio increased. The overall maximum improvement in mechanical properties was recorded when the filler ratios increased from 15 wt% to 20 wt%.