This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave mo...This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.展开更多
A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These...A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These entities are assembled into a multi-rigid-body system with flexible links. Dynamical equations of each entity are derived on the basis of the Newton law and the Euler transformation. Using the invariance property of the tensor, the dynamical and kinematical equations are converted to tensor forms which are invariant under time-dependent coordinate transformations. Then the tensor-formed equations are expressed by the matrix operation. Differential equation group of the matrix form is formulated for the programming. The closure of the model is discussed, and the simulation results are given.展开更多
In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during th...In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during the transition from hover to level flight.Considering the difficulty of parameter tuning of ADRC as well as the requirement of accuracy and rapidity of the controller,a Multi-Strategy Pigeon-Inspired Optimization(MSPIO)algorithm is employed.Particle Swarm Optimization(PSO),Genetic Algorithm(GA),the basic Pigeon-Inspired Optimization(PIO),and an improved PIO algorithm CMPIO are compared.In addition,the optimized ADRC control system is compared with the pure Proportional-Integral-Derivative(PID)control system and the non-optimized ADRC control system.The effectiveness of the designed control strategy for forward transition is verified and the faster convergence speed and better exploitation ability of the proposed MSPIO algorithm are confirmed by simulation results.展开更多
Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are...Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are less efficient under off-resonance conditions and have a narrow power capture bandwidth. Thus, a multi-freedom WEC with a nonlinear PTO system is proposed. This study examines a multi-freedom WEC with 3 degrees of freedom: surge, heave and pitch. Three different PTO systems (velocity-square, snap through, and constant PTO systems) and a traditional linear PTO system are applied to the WEC. A time-domain model is established using linear potential theory and Cummins equation. The kinematic equation is numerically calculated with the fourth-order Runge–Kutta method. The optimal average output power of the PTO systems in all degrees of freedom are obtained and compared. Other parameters of snap through PTO are also discussed in detail. Results show that according to the power capture performance, the order of the PTO systems from the best to worst is snap through PTO, constant PTO, linear PTO and velocity-square PTO. The resonant frequency of the WEC can be adjusted to the incident wave frequency by choosing specific parameters of the snap through PTO. Adding more DOFs can make the WEC get a better power performance in more wave frequencies. Both the above two methods can raise the WEC’s power capture performance significantly.展开更多
The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results o...The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results on the autonomous take-off and landing technology of unmanned aerial vehicles,four types of technologies are studied,including jumping take-off and landing technology,taxiing take-off and landing technology,gliding take-off and landing technology,and vertical take-off and landing(VTOL)technology.Based on the analytic hierarchy process(AHP)-comprehensive evaluation method,a fuzzy comprehensive evaluation model for the autonomous take-off and landing scheme of a BFAV is established,and four schemes are evaluated concretely.The results show that under the existing technical conditions,the hybrid layout VTOL scheme is the best.Furthermore,the detailed design and development of the prototype of a BFAV with a four-rotor hybrid layout are carried out,and the vehicle performance is tested.The results prove that through the four-rotor hybrid layout design,the BFAV has good autonomous take-off and landing abilities.The power consumption analysis shows that for a fixed-point reconnaissance mission,when the mission radius is less than 3.38 km,the VTOL type exhibits longer mission duration than the hand-launched type.展开更多
The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-ab...The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-absorbing floating body rotates around the hinge point, and the wave energy can be converted into kinetic energy. In this paper, the power take-off system of " Sharp Eagle Ⅱ” wave energy converter (the second generation of " Sharp Eagle”) was studied, which adopts the hydraulic type power take-off system. The 0-1 power generation mode was applied in this system to make the " Sharp Eagle Ⅱ” operate under various wave conditions. The principle of power generation was introduced in detail, and the power take-off system was simulated. Three groups of different movement period inputs were used to simulate three kinds of wave conditions, and the simulation results were obtained under three different working conditions. In addition, the prototype of " Sharp Eagle Ⅱ” wave energy converter was tested on land and in real sea conditions. The experimental data have been collected, and the experimental data and simulation results were compared and validated. This work has laid a foundation for the design and application of the following " Sharp Eagle” series of devices.展开更多
A novel method for estimating the space range of battery-powered vertical take-off and landing(VTOL) aircraft is presented. The method is based on flight parameter optimization and numerical iteration. Subsystem model...A novel method for estimating the space range of battery-powered vertical take-off and landing(VTOL) aircraft is presented. The method is based on flight parameter optimization and numerical iteration. Subsystem models including required thrust, required power and battery discharge models are presented. The problem to be optimized is formulated, and then case study simulation is conducted using the established method for quantitative analysis. Simulation results show that the space range of battery-powered VTOL aircraft in a vertical plane is an oblate curve, which appears horizontally long but vertically short, and the peak point is not located on the vertical climb path. The method and results are confirmed by parameter analysis and validations.展开更多
Nowadays, the success of the new technology development and deployment process depends not only on technical, technological solutions, but also on solving the non-technological problems and crossing the societal and p...Nowadays, the success of the new technology development and deployment process depends not only on technical, technological solutions, but also on solving the non-technological problems and crossing the societal and psychological barriers. A large international European projects, GABRIEL1 had developed a maglev assisted aircraft take-off and landing, that was applied to conceptual design of aircraft and required on-board and ground systems, had analysed all impacts (effects of concept deployment on effectiveness, safety, security, noise, emissions) and had demonstrated the safe applicability by concept validation. The applied methodology, used methods and the results of the Gabriel projects had been described and discussed by 55 project deliverables. This paper has a special goal: investigating the problems and barriers of possible implementing of the radically new technology, aircraft MagLev assisted take-off and landing. The study was started by identification and classification of the problems and barriers. After it, the problems were systematically analysed by use of special methodology containing the understanding (description) of the problems, investigation of the possible solutions and discussing their applicability (mainly by use of the Gabriel project results). The paper has three major sections: 1) description of the Gabriel concept and project results, 2) introducing some related thoughts on general aspects of new technology developments, and 3) discussion on the problems and their solutions. The major classes of the problems are the 1) technical, technological problems as developing a radically new solution, landing the undercarriage-less aircraft on the magnetic tracks, 2) stakeholders’ problems as decision makers kicking against supporting the developments of so radically new technologies and 3) society barriers like society worrying on and fear of future passengers on flying by aircraft have not conventional undercarriage systems. The paper will show that these problems have safe and cost-effective solutions.展开更多
This study proposed a wave power system with two coaxial floating cylinders of different diameters and drafts.Wavebob’s conceptual design has been adopted in the wave power system.In this study,a basic analysis of th...This study proposed a wave power system with two coaxial floating cylinders of different diameters and drafts.Wavebob’s conceptual design has been adopted in the wave power system.In this study,a basic analysis of the wave energy extraction by the relative motion between two floats is presented.The maximum power absorption was studied theoretically under regular wave conditions,and the effects of both linear and constant damping forces on the power take-off(PTO)were investigated.A set of dynamic equations describing the floats’displacement under regular waves and different PTOs are established.A time-domain numerical model is developed,considering the PTO parameter and viscous damping,and the optimal PTO damping and output power are obtained.With the analysis of estimating the maximum power absorption,a new estimation method called Power Capture Function(PCF)is proposed and constructed,which can be used to predict the power capture under both linear and constant PTO forces.Based on this,energy extraction is analyzed and optimized.Finally,the performance characteristics of the two-body power system are concluded.展开更多
Climate change (CC) and variability have been world widely reported to pose number of risks in aviation industry including accidents, astray, and other operational difficulties. The impact of weather on landing and ta...Climate change (CC) and variability have been world widely reported to pose number of risks in aviation industry including accidents, astray, and other operational difficulties. The impact of weather on landing and take-off performances has been several times experienced at Abeid Amani Karume International Airport (AAKIA);however, the influence of climate change and variability to the aircraft performance needs to be assessed. Thus, this study investigated the influence of climate change and variability on aircrafts take-off and landing performances. Specifically, the study investigated;i) the influence of climate change on Take-off Distance Required (TODR) and Maximum Take-off Mass (MTOM) for different types of aircraft;ii) the influence of climate variability to the aircraft landing performance on light, medium and heavy aircraft and lastly, iii) the study investigated the seasonal and annual variability on aircraft landing performance due to climate variability. The datasets used in this study include the eight years (2014-2021), aircraft operational records (diversion and missed approach events) and Aviation Routine Weather Reports (METAR) records which were utilized as the indicators for landing performance, the long-term (1990-2020) annual maximum temperatures (Tmax) which was used to determine the TODR and MTOM. Statistical tools including mean, percentage changes, correlations, regression, and the chi-square test were used for analysis and hypotheses testing. The results revealed that light and medium aircraft categories were significantly most affected on diversion events as compared to the heavy categories;however, for the missed approach events the impact was vice versa. Moreover, the seasonal and annual variability on diversion and missed approach events were significantly different (at p ≤ 0.001). As for the take-off performance, results show that the TODR and MTOM were significantly increasing and decreasing (at p ≤ 0.001), based on increasing air temperatures. Therefore, the study concludes that the changing climate has significantly affected aircraft by increasing the TODR and decreasing the MTOM, while the climate variability has significantly affected landing performance by influencing the diversion and missed approach events. Thus, the study recommends (i) further research works including the feasibility study on runway extension for the safety of future aircraft operations at the AAKIA and (ii) proper maintenance and improvement of the Instrumental Landing Systems (ILS) as an adaptation measures to the landing aircraft during bad weather events.展开更多
In the past few decades, world energy consumption grew considerably. Regarding this fact, wave energy should not be discarded as a valid alternative for the production of electricity. Devices suitable to harness this ...In the past few decades, world energy consumption grew considerably. Regarding this fact, wave energy should not be discarded as a valid alternative for the production of electricity. Devices suitable to harness this kind of renewable energy source and turn it into electricity are not yet commercially competitive. The work described in this paper aims to contribute to this field of research. It is focused on the design and construction of robust, simple and affordable hydraulic Power Take-Off using hydraulic commercial components.展开更多
The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electrom...The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electromechanical conversion,triboelectric nanogenerator(TENG)has significant advantages in marine energy for its low weight,cost-effectiveness,and high efficiency in low-frequency range.It can realize the efficient and economical harvesting of low-frequency blue energy by constructing the floating marine energy harvesting TENG.This paper firstly introduces the power transfer process and structural composition of TENG for marine energy harvesting in detail.In addition,the latest research works of TENG on marine energy harvesting in basic research and structural design are systematically reviewed by category.Finally,the advanced research progress in the power take-off types and engineering study of TENG with the marine energy are comprehensively generalized.Importantly,the challenges and problems faced by TENG in marine energy and in situ electrochemical application are summarized and the corresponding prospects and suggestions are proposed for the subsequent development direction and prospects to look forward to promoting the commercialization process of this field.展开更多
Objective:To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis(C.sinensis)against the early fourth instars and female adults of Aedes aegypti(Ae.aegypti).Methods:The lar...Objective:To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis(C.sinensis)against the early fourth instars and female adults of Aedes aegypti(Ae.aegypti).Methods:The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae.aegypli using WHO protocol.The mortality counts were made after 24 h and LC_(50)and LG_(50)values were calculated.The efficacy of extract as mosquito irritant was assessed by contact irritancy assays.Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted.Single female adult,3-day old unfed/blood-fed,was released inside the funnel.After 3 min of acclimatization time,the time taken for the first take-off and total number of flights undertaken during 15 min were scored.Results:The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector.The bioassays resulted in an LC_(50)and LC_(90)value of 446.84 and 1370.96 ppm,respectively after 24 h of exposure.However,the extracts were proved to be remarkable irritant against adults Ae.aegypti,more pronounced effects being observed on blood-fed females than unfed females.The extract-impregnated paper was thus proved to be 7-11 times more irritable as compared with the control paper.Conclusions:The hexane extracts from C.sinensis leaves are proved to be reasonably larvicidal But remarkably irritant against dengue vector.Further studies are needed to identify the possible role of extract as adulticide,oviposition deterrent and ovicidal agent.The isolation of active ingredient from the extract could help in formulating strategies for mosquito control.展开更多
A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydrauli...A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.展开更多
Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters(WECs)...Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters(WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system(HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system(HESS) and a hydraulic power generation system(HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.展开更多
Distributed Electric Propulsion(DEP)aircraft use multiple electric motors to drive the propulsors,which gives potential benefits to aerodynamic-propulsion interaction.To investigate and quantify the aerodynamic-propul...Distributed Electric Propulsion(DEP)aircraft use multiple electric motors to drive the propulsors,which gives potential benefits to aerodynamic-propulsion interaction.To investigate and quantify the aerodynamic-propulsion interaction effect of the wing section,we built a DEP demonstrator with 24"high-lift"Electric Ducted Fans(EDFs)distributed along the wing’s trailing edge.This paper explores and compares the aero-propulsion coupling characteristics under various upstream speed,throttle,and EDF mounting surface deflection angles using a series of wind tunnel tests.We compare various lift-augmentation power conditions to the clean configuration without propulsion unit under the experiment condition of 15-25 m/s freestream flow and angles of attack from-4°to 16°.The comparison of computational results to the experimental results verifies the effectiveness of the computational fluid dynamic analysis method and the modeling method for the DEP configuration.The results show that the EDFs can produce significant lift increment and drag reduction simultaneously,which is accordant with the potential benefit of Boundary Layer Ingestion(BLI)at low airspeed.展开更多
The double-body heave wave energy converter(WEC)is one of the most conducive devices to absorb the wave energy from relative motion while the law of which is not well understood.This paper makes an in-depth study on t...The double-body heave wave energy converter(WEC)is one of the most conducive devices to absorb the wave energy from relative motion while the law of which is not well understood.This paper makes an in-depth study on this wave energy converter,by means of the combination of theoretical analysis and physical model experiment.The hydrodynamic characteristics and energy capture of the double-buoy under constant and linear Power Take-Off(PTO)damping are investigated.Influences of absolute mass and mass ratio are discussed in the theoretical model.Relative displacement amplitude and average power output are tested in the experiment to analyze the effect of the wave period and outer buoy’s mass,while the capture width ratio(CWR)is also calculated.Results show that the wave period and mass of the buoys have a significant effect on the converter.Different forms of PTO damping have no influence on the optimal wave period and mass ratio of this device.It is recommended to select the double-buoy converter with a mass ratio of 0.80 and to place it in an area with the frequent wave period close to the natural period of the outer buoy to achieve the optimal energy capture.展开更多
This paper investigates the precise trajectory tracking of unmanned aerial vehicles(UAV) capable of vertical take-off and landing(VTOL) subjected to external disturbances. For this reason, a robust higher-order-observ...This paper investigates the precise trajectory tracking of unmanned aerial vehicles(UAV) capable of vertical take-off and landing(VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller(HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm(FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables,which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy′s effectiveness and its superiorities over conventional sliding mode controller(SMC) and integral SMC approaches.展开更多
In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional p...In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51205346 and 41206074)the National High Technology Research and Development Program of China(863 Program+3 种基金Grant No.2011AA050201)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12E05017)Open Foundation of the State Key Laboratory of Fluid Power Transmission and Control(Grant No.GZKF-201311)
文摘This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.
文摘A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These entities are assembled into a multi-rigid-body system with flexible links. Dynamical equations of each entity are derived on the basis of the Newton law and the Euler transformation. Using the invariance property of the tensor, the dynamical and kinematical equations are converted to tensor forms which are invariant under time-dependent coordinate transformations. Then the tensor-formed equations are expressed by the matrix operation. Differential equation group of the matrix form is formulated for the programming. The closure of the model is discussed, and the simulation results are given.
基金supported by Science and Technology Innovation 2030-Key Project of"New Generation Artificial Intelli-gence",China(No.2018AAA0100803)National Natural Science Foundation of China(Nos.U20B2071,91948204,U1913602)Aeronautical Foundation of China(No.20185851022).
文摘In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during the transition from hover to level flight.Considering the difficulty of parameter tuning of ADRC as well as the requirement of accuracy and rapidity of the controller,a Multi-Strategy Pigeon-Inspired Optimization(MSPIO)algorithm is employed.Particle Swarm Optimization(PSO),Genetic Algorithm(GA),the basic Pigeon-Inspired Optimization(PIO),and an improved PIO algorithm CMPIO are compared.In addition,the optimized ADRC control system is compared with the pure Proportional-Integral-Derivative(PID)control system and the non-optimized ADRC control system.The effectiveness of the designed control strategy for forward transition is verified and the faster convergence speed and better exploitation ability of the proposed MSPIO algorithm are confirmed by simulation results.
基金financially supported by the Shandong Provincial Natural Science Key Basic Program(Grant No.ZR2017ZA0202)the Qingdao Municipal Science&Technology Program(Grant No.15-8-3-7-jch)Special Project for Marine Renewable Energy(Grant No.GHME2016YY02)
文摘Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are less efficient under off-resonance conditions and have a narrow power capture bandwidth. Thus, a multi-freedom WEC with a nonlinear PTO system is proposed. This study examines a multi-freedom WEC with 3 degrees of freedom: surge, heave and pitch. Three different PTO systems (velocity-square, snap through, and constant PTO systems) and a traditional linear PTO system are applied to the WEC. A time-domain model is established using linear potential theory and Cummins equation. The kinematic equation is numerically calculated with the fourth-order Runge–Kutta method. The optimal average output power of the PTO systems in all degrees of freedom are obtained and compared. Other parameters of snap through PTO are also discussed in detail. Results show that according to the power capture performance, the order of the PTO systems from the best to worst is snap through PTO, constant PTO, linear PTO and velocity-square PTO. The resonant frequency of the WEC can be adjusted to the incident wave frequency by choosing specific parameters of the snap through PTO. Adding more DOFs can make the WEC get a better power performance in more wave frequencies. Both the above two methods can raise the WEC’s power capture performance significantly.
基金supported in part by the National Key Research and Development Program of China(No.2017YFB1300102)the Key R&D Program in Shaanxi Province of China(No.2020ZDLGY06-05,No 2021ZDLGY09-10)the National Natural Science Foundation of China(No.11902103,No.11872314).
文摘The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results on the autonomous take-off and landing technology of unmanned aerial vehicles,four types of technologies are studied,including jumping take-off and landing technology,taxiing take-off and landing technology,gliding take-off and landing technology,and vertical take-off and landing(VTOL)technology.Based on the analytic hierarchy process(AHP)-comprehensive evaluation method,a fuzzy comprehensive evaluation model for the autonomous take-off and landing scheme of a BFAV is established,and four schemes are evaluated concretely.The results show that under the existing technical conditions,the hybrid layout VTOL scheme is the best.Furthermore,the detailed design and development of the prototype of a BFAV with a four-rotor hybrid layout are carried out,and the vehicle performance is tested.The results prove that through the four-rotor hybrid layout design,the BFAV has good autonomous take-off and landing abilities.The power consumption analysis shows that for a fixed-point reconnaissance mission,when the mission radius is less than 3.38 km,the VTOL type exhibits longer mission duration than the hand-launched type.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13040202)the Special Funding Program for Marine Renewable Energy of the State Oceanic Administration(Grant No.GHME2017SF01)
文摘The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-absorbing floating body rotates around the hinge point, and the wave energy can be converted into kinetic energy. In this paper, the power take-off system of " Sharp Eagle Ⅱ” wave energy converter (the second generation of " Sharp Eagle”) was studied, which adopts the hydraulic type power take-off system. The 0-1 power generation mode was applied in this system to make the " Sharp Eagle Ⅱ” operate under various wave conditions. The principle of power generation was introduced in detail, and the power take-off system was simulated. Three groups of different movement period inputs were used to simulate three kinds of wave conditions, and the simulation results were obtained under three different working conditions. In addition, the prototype of " Sharp Eagle Ⅱ” wave energy converter was tested on land and in real sea conditions. The experimental data have been collected, and the experimental data and simulation results were compared and validated. This work has laid a foundation for the design and application of the following " Sharp Eagle” series of devices.
文摘A novel method for estimating the space range of battery-powered vertical take-off and landing(VTOL) aircraft is presented. The method is based on flight parameter optimization and numerical iteration. Subsystem models including required thrust, required power and battery discharge models are presented. The problem to be optimized is formulated, and then case study simulation is conducted using the established method for quantitative analysis. Simulation results show that the space range of battery-powered VTOL aircraft in a vertical plane is an oblate curve, which appears horizontally long but vertically short, and the peak point is not located on the vertical climb path. The method and results are confirmed by parameter analysis and validations.
文摘Nowadays, the success of the new technology development and deployment process depends not only on technical, technological solutions, but also on solving the non-technological problems and crossing the societal and psychological barriers. A large international European projects, GABRIEL1 had developed a maglev assisted aircraft take-off and landing, that was applied to conceptual design of aircraft and required on-board and ground systems, had analysed all impacts (effects of concept deployment on effectiveness, safety, security, noise, emissions) and had demonstrated the safe applicability by concept validation. The applied methodology, used methods and the results of the Gabriel projects had been described and discussed by 55 project deliverables. This paper has a special goal: investigating the problems and barriers of possible implementing of the radically new technology, aircraft MagLev assisted take-off and landing. The study was started by identification and classification of the problems and barriers. After it, the problems were systematically analysed by use of special methodology containing the understanding (description) of the problems, investigation of the possible solutions and discussing their applicability (mainly by use of the Gabriel project results). The paper has three major sections: 1) description of the Gabriel concept and project results, 2) introducing some related thoughts on general aspects of new technology developments, and 3) discussion on the problems and their solutions. The major classes of the problems are the 1) technical, technological problems as developing a radically new solution, landing the undercarriage-less aircraft on the magnetic tracks, 2) stakeholders’ problems as decision makers kicking against supporting the developments of so radically new technologies and 3) society barriers like society worrying on and fear of future passengers on flying by aircraft have not conventional undercarriage systems. The paper will show that these problems have safe and cost-effective solutions.
基金financially supported by the National Key R&D Program of China (Grant No. 2018YFB1501904)the Shandong Provincial Key R&D Program (Grant No. 2019JZZY010902)+2 种基金the National Natural Science Foundation of China (Grant No. 52071303)the Joint Project of NSFC-SD (Grant No. U1906228)the Taishan Scholars Program of Shandong Province (Grant No. ts20190914)
文摘This study proposed a wave power system with two coaxial floating cylinders of different diameters and drafts.Wavebob’s conceptual design has been adopted in the wave power system.In this study,a basic analysis of the wave energy extraction by the relative motion between two floats is presented.The maximum power absorption was studied theoretically under regular wave conditions,and the effects of both linear and constant damping forces on the power take-off(PTO)were investigated.A set of dynamic equations describing the floats’displacement under regular waves and different PTOs are established.A time-domain numerical model is developed,considering the PTO parameter and viscous damping,and the optimal PTO damping and output power are obtained.With the analysis of estimating the maximum power absorption,a new estimation method called Power Capture Function(PCF)is proposed and constructed,which can be used to predict the power capture under both linear and constant PTO forces.Based on this,energy extraction is analyzed and optimized.Finally,the performance characteristics of the two-body power system are concluded.
文摘Climate change (CC) and variability have been world widely reported to pose number of risks in aviation industry including accidents, astray, and other operational difficulties. The impact of weather on landing and take-off performances has been several times experienced at Abeid Amani Karume International Airport (AAKIA);however, the influence of climate change and variability to the aircraft performance needs to be assessed. Thus, this study investigated the influence of climate change and variability on aircrafts take-off and landing performances. Specifically, the study investigated;i) the influence of climate change on Take-off Distance Required (TODR) and Maximum Take-off Mass (MTOM) for different types of aircraft;ii) the influence of climate variability to the aircraft landing performance on light, medium and heavy aircraft and lastly, iii) the study investigated the seasonal and annual variability on aircraft landing performance due to climate variability. The datasets used in this study include the eight years (2014-2021), aircraft operational records (diversion and missed approach events) and Aviation Routine Weather Reports (METAR) records which were utilized as the indicators for landing performance, the long-term (1990-2020) annual maximum temperatures (Tmax) which was used to determine the TODR and MTOM. Statistical tools including mean, percentage changes, correlations, regression, and the chi-square test were used for analysis and hypotheses testing. The results revealed that light and medium aircraft categories were significantly most affected on diversion events as compared to the heavy categories;however, for the missed approach events the impact was vice versa. Moreover, the seasonal and annual variability on diversion and missed approach events were significantly different (at p ≤ 0.001). As for the take-off performance, results show that the TODR and MTOM were significantly increasing and decreasing (at p ≤ 0.001), based on increasing air temperatures. Therefore, the study concludes that the changing climate has significantly affected aircraft by increasing the TODR and decreasing the MTOM, while the climate variability has significantly affected landing performance by influencing the diversion and missed approach events. Thus, the study recommends (i) further research works including the feasibility study on runway extension for the safety of future aircraft operations at the AAKIA and (ii) proper maintenance and improvement of the Instrumental Landing Systems (ILS) as an adaptation measures to the landing aircraft during bad weather events.
文摘In the past few decades, world energy consumption grew considerably. Regarding this fact, wave energy should not be discarded as a valid alternative for the production of electricity. Devices suitable to harness this kind of renewable energy source and turn it into electricity are not yet commercially competitive. The work described in this paper aims to contribute to this field of research. It is focused on the design and construction of robust, simple and affordable hydraulic Power Take-Off using hydraulic commercial components.
文摘Ⅰ. THE SUGGESTION OF THE STRATEGIC MEASURE Situated at the junction between the vast Eurasian landmass and the south Asian subcontinent, Yunnan Prov-
基金supported by the Talent Fund of Beijing Jiaotong University(2023XKRC034)China National Postdoctoral Program for Innovative Talents(BX20230037)+3 种基金China Postdoctoral Science Foundation(2023M730205)National key research and development program(2021YFB3203202)Beijing Municipal Natural Science Foundation(4232074)Fundamental Research Funds for the Central Universities(2020JBZD011)。
文摘The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electromechanical conversion,triboelectric nanogenerator(TENG)has significant advantages in marine energy for its low weight,cost-effectiveness,and high efficiency in low-frequency range.It can realize the efficient and economical harvesting of low-frequency blue energy by constructing the floating marine energy harvesting TENG.This paper firstly introduces the power transfer process and structural composition of TENG for marine energy harvesting in detail.In addition,the latest research works of TENG on marine energy harvesting in basic research and structural design are systematically reviewed by category.Finally,the advanced research progress in the power take-off types and engineering study of TENG with the marine energy are comprehensively generalized.Importantly,the challenges and problems faced by TENG in marine energy and in situ electrochemical application are summarized and the corresponding prospects and suggestions are proposed for the subsequent development direction and prospects to look forward to promoting the commercialization process of this field.
基金supported by University Grants Commission[grant No.F.35-74/2009(SR)]
文摘Objective:To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis(C.sinensis)against the early fourth instars and female adults of Aedes aegypti(Ae.aegypti).Methods:The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae.aegypli using WHO protocol.The mortality counts were made after 24 h and LC_(50)and LG_(50)values were calculated.The efficacy of extract as mosquito irritant was assessed by contact irritancy assays.Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted.Single female adult,3-day old unfed/blood-fed,was released inside the funnel.After 3 min of acclimatization time,the time taken for the first take-off and total number of flights undertaken during 15 min were scored.Results:The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector.The bioassays resulted in an LC_(50)and LC_(90)value of 446.84 and 1370.96 ppm,respectively after 24 h of exposure.However,the extracts were proved to be remarkable irritant against adults Ae.aegypti,more pronounced effects being observed on blood-fed females than unfed females.The extract-impregnated paper was thus proved to be 7-11 times more irritable as compared with the control paper.Conclusions:The hexane extracts from C.sinensis leaves are proved to be reasonably larvicidal But remarkably irritant against dengue vector.Further studies are needed to identify the possible role of extract as adulticide,oviposition deterrent and ovicidal agent.The isolation of active ingredient from the extract could help in formulating strategies for mosquito control.
基金supported by Marine Renewable Energy Funds Projects(Grant Nos.GHME2010GC01 and GHME2011BL06)
文摘A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.
基金financially supported by the Natural Science Foundation of Guangdong Province(Grant No.2015A030313717)the Chinese Ocean Renewable Energy Special Fund(Grant Nos.GHME2013ZB01,GHME2013GC01,and GHME2010GC01)Renewable Energy Key Laboratory 2013 Annual Fund of the Academy of Sciences of China(Grant No.y407j71001)
文摘Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters(WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system(HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system(HESS) and a hydraulic power generation system(HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.
基金supported by the National Natural Science Foundation of China(No.51877178)。
文摘Distributed Electric Propulsion(DEP)aircraft use multiple electric motors to drive the propulsors,which gives potential benefits to aerodynamic-propulsion interaction.To investigate and quantify the aerodynamic-propulsion interaction effect of the wing section,we built a DEP demonstrator with 24"high-lift"Electric Ducted Fans(EDFs)distributed along the wing’s trailing edge.This paper explores and compares the aero-propulsion coupling characteristics under various upstream speed,throttle,and EDF mounting surface deflection angles using a series of wind tunnel tests.We compare various lift-augmentation power conditions to the clean configuration without propulsion unit under the experiment condition of 15-25 m/s freestream flow and angles of attack from-4°to 16°.The comparison of computational results to the experimental results verifies the effectiveness of the computational fluid dynamic analysis method and the modeling method for the DEP configuration.The results show that the EDFs can produce significant lift increment and drag reduction simultaneously,which is accordant with the potential benefit of Boundary Layer Ingestion(BLI)at low airspeed.
基金financially supported by the National Key R&D Program of China(Grant No.2018YFB1501900)the National Natural Science Foundation of China(Grant No.52071303)Shandong Provincial Key Research and Development Program(SPKR&DP-MSTIP)(Grant No.2019JZZY010902)。
文摘The double-body heave wave energy converter(WEC)is one of the most conducive devices to absorb the wave energy from relative motion while the law of which is not well understood.This paper makes an in-depth study on this wave energy converter,by means of the combination of theoretical analysis and physical model experiment.The hydrodynamic characteristics and energy capture of the double-buoy under constant and linear Power Take-Off(PTO)damping are investigated.Influences of absolute mass and mass ratio are discussed in the theoretical model.Relative displacement amplitude and average power output are tested in the experiment to analyze the effect of the wave period and outer buoy’s mass,while the capture width ratio(CWR)is also calculated.Results show that the wave period and mass of the buoys have a significant effect on the converter.Different forms of PTO damping have no influence on the optimal wave period and mass ratio of this device.It is recommended to select the double-buoy converter with a mass ratio of 0.80 and to place it in an area with the frequent wave period close to the natural period of the outer buoy to achieve the optimal energy capture.
文摘This paper investigates the precise trajectory tracking of unmanned aerial vehicles(UAV) capable of vertical take-off and landing(VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller(HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm(FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables,which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy′s effectiveness and its superiorities over conventional sliding mode controller(SMC) and integral SMC approaches.
文摘In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.