期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dosage effect genes modulate grain development in synthesized Triticum durum-Haynaldia villosa allohexaploid
1
作者 Zhongyu Yu Baofeng Cui +7 位作者 Jin Xiao Wu Jiao Haiyan Wang Zongkuan Wang Li Sun Qingxin Song Jingya Yuan Xiue Wang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2024年第10期1089-1100,共12页
Polyploidization in plants often leads to increased cell size and grain size,which may be affected by the increased genome dosage and transcription abundance.The synthesized Triticum durum(AABB)-Hay-naldia villosa(WM)... Polyploidization in plants often leads to increased cell size and grain size,which may be affected by the increased genome dosage and transcription abundance.The synthesized Triticum durum(AABB)-Hay-naldia villosa(WM)amphiploid(AABBM)has significantly increased grain size,especially grain length,than the tetraploid and diploid parents.To investigate how polyploidization affects grain development at the transcriptional level,we perform transcriptome analysis using the immature seeds of T.durum,H.villosa,and the amphiploid.The dosage effect genes are contributed more by differentially expressed genes from genome V of H.villosa.The dosage effect genes overrepresent grain development-related genes.Inter-estingly,the vernalization gene TaVRN1 is among the positive dosage effect genes in the T.durum-H.villosa and T.turgidum-Ae.tauschii amphiploids.The expression levels of TaVRN1 homologs are positively correlated with the grain size and weight.The TaVRN1-B1 or TaVRN1-D1 mutation shows delayed florescence,decreased cell size,grain size,and grain yield.These data indicate that dosage effect genes could be one of the important explanations for increased grain size by regulating grain development.The identification and functional validation of dosage effect genes may facilitate the finding of valuable genes for improvingwheat yield. 展开更多
关键词 ALLOPOLYPLOID POLYPLOIDIZATION Dosage effect WHEAT Grain size tavrn1
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部