Nanoscale Ta-based diffusion barrier thin-films and Cu/barrier/Si multilayer structures were deposited on p-type Si (100) substrates by DC magnetron sputtering. Then the samples were rapidly thermal-annealed (RTA) by ...Nanoscale Ta-based diffusion barrier thin-films and Cu/barrier/Si multilayer structures were deposited on p-type Si (100) substrates by DC magnetron sputtering. Then the samples were rapidly thermal-annealed (RTA) by tungsten halide lamp. The resistance properties, structure and surface morphology of the thin-films were investigated by four-point probe (FPP) sheet resistance measurement, AFM, SEM-EDS, Alpha-Step IQ Profilers and XRD. The experimental results showed that agglomeration, oxidation and stabilization effects are concurrent. And resistance increasing and decreasing are coexistent after RTA. The formation of high resistance Cu3Si due to inter-diffusion between Cu and Si and more intensive electron scattering resulting from rougher surface caused the sheet resistance to increase abruptly after high temperature RTA.展开更多
Using the slurry reaction sintering process to prepare Hf-Ta-Si composite coating on Ta12W alloy surface,the effect of Si content on the in-situ formation mechanism of the Hf-Ta-Si coating was investigated.Results sho...Using the slurry reaction sintering process to prepare Hf-Ta-Si composite coating on Ta12W alloy surface,the effect of Si content on the in-situ formation mechanism of the Hf-Ta-Si coating was investigated.Results show that 30Hf:70Si coatings exhibit inferior surface uniformity with some pores.The upper part of the sample displays a four-layer gradient structure:the outermost layer is primarily composed of HfSi and HfC,the middle layer consists of(Ta,Hf)_(5)Si_(3)solid solution,the lower main-layer consists of TaSi_(2),and the coating/substrate interface layer is Ta_(5)Si_(3).However,the flow of molten Si under gravity leads to Si-enrichment on the lower part of the coating.After optimizing the Hf:Si ratio to 40:60,the gradient differences in elemental distribution on the coating surface decrease.The surface layer is dominated by HfSi/HfC,but the precipitation of HfC becomes more uniform.The continuity of the(Ta,Hf)_(5)Si_(3)solid solution in middle layer is enhanced,whereas the lower layer and the interface transition layer remain unchanged.Overall,a denser multi-layer gradient structure is formed with improved surface uniformity.Additionally,the acid-alcohol resin in the organic solvent suffers high-temperature pyrolysis and in-situ reacts with Hf to generate the ultra-high-temperature ceramic HfC.This phenomenon is expected to enhance the oxidation resistance and high-temperature stability of coating.展开更多
基金the National Natural Science Foundation of China (Grant No. 60371046)
文摘Nanoscale Ta-based diffusion barrier thin-films and Cu/barrier/Si multilayer structures were deposited on p-type Si (100) substrates by DC magnetron sputtering. Then the samples were rapidly thermal-annealed (RTA) by tungsten halide lamp. The resistance properties, structure and surface morphology of the thin-films were investigated by four-point probe (FPP) sheet resistance measurement, AFM, SEM-EDS, Alpha-Step IQ Profilers and XRD. The experimental results showed that agglomeration, oxidation and stabilization effects are concurrent. And resistance increasing and decreasing are coexistent after RTA. The formation of high resistance Cu3Si due to inter-diffusion between Cu and Si and more intensive electron scattering resulting from rougher surface caused the sheet resistance to increase abruptly after high temperature RTA.
基金National Natural Science Foundation of China(52071274)Natural Science Foundation of Shaanxi Province of China(2025JC-YBMS-466)+1 种基金Key Research and Development Projects of Shaanxi Province(2023-YBGY-442)Science and Technology Nova Project-Innovative Talent Promotion Program of Shaanxi Province(2020KJXX-062)。
文摘Using the slurry reaction sintering process to prepare Hf-Ta-Si composite coating on Ta12W alloy surface,the effect of Si content on the in-situ formation mechanism of the Hf-Ta-Si coating was investigated.Results show that 30Hf:70Si coatings exhibit inferior surface uniformity with some pores.The upper part of the sample displays a four-layer gradient structure:the outermost layer is primarily composed of HfSi and HfC,the middle layer consists of(Ta,Hf)_(5)Si_(3)solid solution,the lower main-layer consists of TaSi_(2),and the coating/substrate interface layer is Ta_(5)Si_(3).However,the flow of molten Si under gravity leads to Si-enrichment on the lower part of the coating.After optimizing the Hf:Si ratio to 40:60,the gradient differences in elemental distribution on the coating surface decrease.The surface layer is dominated by HfSi/HfC,but the precipitation of HfC becomes more uniform.The continuity of the(Ta,Hf)_(5)Si_(3)solid solution in middle layer is enhanced,whereas the lower layer and the interface transition layer remain unchanged.Overall,a denser multi-layer gradient structure is formed with improved surface uniformity.Additionally,the acid-alcohol resin in the organic solvent suffers high-temperature pyrolysis and in-situ reacts with Hf to generate the ultra-high-temperature ceramic HfC.This phenomenon is expected to enhance the oxidation resistance and high-temperature stability of coating.