Low-oxygen TZM alloy(oxygen content of 0.03vol%)was subjected to solid-solution heat treatment at various temperatures followed by quenching.Results show that the tensile strength of the alloy gradually decreases with...Low-oxygen TZM alloy(oxygen content of 0.03vol%)was subjected to solid-solution heat treatment at various temperatures followed by quenching.Results show that the tensile strength of the alloy gradually decreases with the increase in solidsolution temperature,and the elongation first increases and then decreases.The the amount of nanoscale Ti-rich phases precipitated in low-oxygen TZM alloys gradually increases with the increase in solid-solution temperature.Special strip-shaped Ti-rich areas appear in the samples solidified at 1200 and 1300℃.The nanoscale Ti-rich phases ensure the uniform distribution of dislocations throughout TZM alloy,while significantly improving the plasticity of low-oxygen TZM alloy samples.展开更多
The TZM alloys with different contents of ZrO_(2)were prepared by powder metallurgy and rolling,and the grain size,hardness,and abrasive wear resistance of TZM alloy were studied.The abrasive wear test of TZM alloy wa...The TZM alloys with different contents of ZrO_(2)were prepared by powder metallurgy and rolling,and the grain size,hardness,and abrasive wear resistance of TZM alloy were studied.The abrasive wear test of TZM alloy was conducted under the conditions of 10,15,and 20 N and abrasive particle sizes of 7,11,18,and 38μm.The results show that the added ZrO_(2)particles in TZM alloy are mainly distributed at the grain boundaries.The grains of TZM alloy containing 1.5wt%ZrO_(2)are significantly refined,and the hardness is increased by 16%.The wear test results show that TZM alloy containing 1.5wt%ZrO_(2)has the lowest mass loss rate and excellent wear resistance under all loads and abrasive sizes,and the wear performance is improved by 12%.The ZrO_(2)with high hardness becomes the main bearer of the load,and as the second-phase,it hinders the abrasive particles from entering the matrix and effectively resists the scratch of the abrasive particles,which is the main reason for the excellent wear resistance.展开更多
基金Outstanding Doctorate Dissertation Cultivation Fund of Xi'an University of Architecture and Technology(160842012)National Natural Science Foundation of China(52404409,52374401,52104382)+3 种基金China Postdoctoral Science Foundation(2024MD753961)Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan(2022TD-30)Key R&D Plan of Shaanxi Province(2023JBGS-14,2024QCYKXJ-116)Xi'an Science and Technology Plan Project(24ZDCYJSGG0043,2023JH-GXRC-0020)。
文摘Low-oxygen TZM alloy(oxygen content of 0.03vol%)was subjected to solid-solution heat treatment at various temperatures followed by quenching.Results show that the tensile strength of the alloy gradually decreases with the increase in solidsolution temperature,and the elongation first increases and then decreases.The the amount of nanoscale Ti-rich phases precipitated in low-oxygen TZM alloys gradually increases with the increase in solid-solution temperature.Special strip-shaped Ti-rich areas appear in the samples solidified at 1200 and 1300℃.The nanoscale Ti-rich phases ensure the uniform distribution of dislocations throughout TZM alloy,while significantly improving the plasticity of low-oxygen TZM alloy samples.
基金National Natural Science Foundation of China(U1804124)Key Scientific and Technological Project of Henan Province(202102210014)。
文摘The TZM alloys with different contents of ZrO_(2)were prepared by powder metallurgy and rolling,and the grain size,hardness,and abrasive wear resistance of TZM alloy were studied.The abrasive wear test of TZM alloy was conducted under the conditions of 10,15,and 20 N and abrasive particle sizes of 7,11,18,and 38μm.The results show that the added ZrO_(2)particles in TZM alloy are mainly distributed at the grain boundaries.The grains of TZM alloy containing 1.5wt%ZrO_(2)are significantly refined,and the hardness is increased by 16%.The wear test results show that TZM alloy containing 1.5wt%ZrO_(2)has the lowest mass loss rate and excellent wear resistance under all loads and abrasive sizes,and the wear performance is improved by 12%.The ZrO_(2)with high hardness becomes the main bearer of the load,and as the second-phase,it hinders the abrasive particles from entering the matrix and effectively resists the scratch of the abrasive particles,which is the main reason for the excellent wear resistance.