The published article titled“Swainsonine inhibits invasion and the EMT process in esophageal carcinoma cells by targeting twist1”has been retracted from Oncology Research,Vol.26,No.8,2018,pp.1207–1213.
目的:明确miR-130a-5p对Twist1(扭曲螺旋转录因子1)的靶向调控作用及对卵巢癌转移的影响。方法:通过基因组测序将与卵巢癌有关的差异基因筛选出来,在临床标本中验证。本研究拟通过过表达miR-130a-5p,采用Transwell, CCK-8(细胞活力检测...目的:明确miR-130a-5p对Twist1(扭曲螺旋转录因子1)的靶向调控作用及对卵巢癌转移的影响。方法:通过基因组测序将与卵巢癌有关的差异基因筛选出来,在临床标本中验证。本研究拟通过过表达miR-130a-5p,采用Transwell, CCK-8(细胞活力检测方法), Western blot等方法,明确miR-130a-5p对Twist的调控作用。结果:miR-130a-5p是通过生物信息学分析发现的miRNA。miR-130a-5p的表达与肿瘤组织有关,可能会对病人的预后造成影响。miR-130a-5p是前期研究发现的、显著高表达针对卵巢癌的miRNA。研究表明,在抑制卵巢癌细胞增殖和转移方面,miR-130a-5p发挥了一定作用。此外,机制研究表明,卵巢癌组织中Twist1表达显著上调,miR-130a-5p能抑制卵巢癌细胞EMT(上皮间质转化)及干细胞特性。结论:(1)miR-130a-5p是新近发现的在卵巢癌中发挥重要作用的miRNA。(2)miR-130a-5p通过Twist信号通路的调节来抑制卵巢癌的进展。展开更多
It is known that monotone recurrence relations can induce a class of twist homeomorphisms on the high-dimensional cylinder,which is an extension of the class of monotone twist maps on the annulus or two-dimensional cy...It is known that monotone recurrence relations can induce a class of twist homeomorphisms on the high-dimensional cylinder,which is an extension of the class of monotone twist maps on the annulus or two-dimensional cylinder.By constructing a bounded solution of the monotone recurrence relation,the main conclusion in this paper is acquired:The induced homeomorphism has Birkhoff orbits provided there is a compact forward-invariant set.Therefore,it generalizes Angenent's results in low-dimensional cases.展开更多
Twist,the very degree of freedom in van der Waals heterostructures,offers a compelling avenue to manipulate and tailor their electrical and optical characteristics.In particular,moirépatterns in twisted homobilay...Twist,the very degree of freedom in van der Waals heterostructures,offers a compelling avenue to manipulate and tailor their electrical and optical characteristics.In particular,moirépatterns in twisted homobilayer transition metal dichalcogenides(TMDs)lead to zone folding and miniband formation in the resulting electronic bands,holding the promise to exhibit inter-layer excitonic optical phenomena.Although some experiments have shown the existence of twist-angle-dependent intra-and inter-layer excitons in twisted MoSe2 homobilayers,electrical control of the interlayer excitons in MoSe_(2) is relatively under-explored.Here,we show the signatures of the moiréeffect on intralayer and interlayer excitons in 2H-stacked twisted MoSe2 homobilayers.Doping-and electric field-dependent photoluminescence mea-surements at low temperatures give evidence of the momentum-direct K-K intralayer excitons,and the momentum-indirect Г-K and Г-Q interlayer excitons.Our results suggest that twisted MoSe_(2) homobilayers are an intriguing platform for engineering interlayer exciton states,which may shed light on future atomically thin optoelectronic applications.展开更多
In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimens...In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimensional twisted BCV spaces.展开更多
In recent years,there has been a surge of interest in higher-order topological phases(HOTPs)across various disciplines within the field of physics.These unique phases are characterized by their ability to harbor topol...In recent years,there has been a surge of interest in higher-order topological phases(HOTPs)across various disciplines within the field of physics.These unique phases are characterized by their ability to harbor topological protected boundary states at lower-dimensional boundaries,a distinguishing feature that sets them apart from conventional topological phases and is attributed to the higher-order bulk-boundary correspondence.Two-dimensional(2D)twisted systems offer an optimal platform for investigating HOTPs,owing to their strong controllability and experimental feasibility.Here,we provide a comprehensive overview of the latest research advancements on HOTPs in 2D twisted multilayer systems.We will mainly review the HOTPs in electronic,magnonic,acoustic,photonic and mechanical twisted systems,and finally provide a perspective of this topic.展开更多
Twisted polymer artificial muscles activated by thermal heating represent a new class of soft actuators capable of generating torsional actuation.The thermal torsion effect,characterized by the reversible untwisting o...Twisted polymer artificial muscles activated by thermal heating represent a new class of soft actuators capable of generating torsional actuation.The thermal torsion effect,characterized by the reversible untwisting of twisted fibers as temperature increases due to greater radial than axial thermal expansion,is crucial to the actuation performance of these artificial muscles.This study explores the thermal torsion effect of polymer muscles made of twisted Nylon 6 fibers in experimental and theoretical aspects,focusing on the interplay between material properties and temperature.It is revealed that the thermal torsion effect enhances the actuation performance of the twisted polymer actuator while the thermal softening effect diminishes it.A thermal-mechanical model incorporating both the thermal torsion effect and thermal softening effect is used to predict the recovered torque of the twisted polymer actuators.An optimal bias angle and operating temperature are identified to maximize the recovered torque.Analysis of strain and stress distributions in the cross-section of the twisted polymer fiber shows that the outer layers of the fiber predominantly contribute to the torsional actuation.This work aids in the precise control and structural optimization of the thermally-activated twisted polymer actuators.展开更多
Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper ...Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper proposes an Adaptive Terminal Sliding Combined Super TwistingControl(ATS-STC)method to address the issues of low precision,slow convergence,and poor dis-turbance rejection capability resulting from external disturbances,such as carrier air-wake and deckmotion.By introducing a nonlinear term into the sliding surface and employing an integralapproach,the proposed ATS-STC method can ensure finite-time convergence and mitigate the chat-tering problem.An adaptive law is also utilized to estimate the external disturbances,therebyenhancing the anti-disturbance performance.Then,the stability and convergence time analysis ofthe designed controller are conducted.Based on the proposed method,an Automatic Carrier Land-ing System(ACLS)is developed to perform the carrier landing control task.Furthermore,a multi-dimensional validation is carried out.For the numerical simulation test,the Terminal Sliding ModeControl(TSMC)method and Proportion Integration Differentiation(PID)method are introducedas comparison,the quantitative assessment results show that the tracking error of TSMC and PIDcan reach 1.5 times and 2 times that of the proposed method.Finally,the Hardware-in-the-Loop(HIL)test and real flight test are conducted.All the experimental results demonstrate that the pro-posed control method is more effective and precise.展开更多
In two-dimensional bilayer systems,twist-angle-dependent electronic and thermoelectric properties have garnered significant scientific interest in recent years.In this work,based on a combination of density functional...In two-dimensional bilayer systems,twist-angle-dependent electronic and thermoelectric properties have garnered significant scientific interest in recent years.In this work,based on a combination of density functional theory and nonequilibrium Green’s function method,we explore the electronic and thermoelectric properties in blue-phosphorene nanoribbon-based heterojunction(BPNRHJ)with and without blue-phosphorene nanoribbon(BPNR)stack.Our calculations find that the electronic conductance and power factor can be strongly enhanced by the BPNR stack,and their enhancements can be further observed with the twist between the layers.The main reason for this is the electronic hybridization between the layers can provide new transport channels,and the twist can modulate the strength of interlayer electronic hybridization,resulting in extremely violent fluctuations in electron transmission and hence an enhanced power factor.While the phonon thermal conductance exhibits very low dependence on the layer stack and twist.Combining these factors,our results reveal that the thermoelectric performance can be greatly modulated and enhanced in twist bilayer BPNRHJ:the figure of merit will be over 2.5 in 4-4-ZBPNR@ZGNR-AA-8.8∘at 500 K.展开更多
Recent advancements in two-dimensional van der Waals moir´e materials have unveiled the captivating landscape of moir´e physics.In twisted bilayer graphene(TBG)at‘magic angles’,strong electronic correlatio...Recent advancements in two-dimensional van der Waals moir´e materials have unveiled the captivating landscape of moir´e physics.In twisted bilayer graphene(TBG)at‘magic angles’,strong electronic correlations give rise to a diverse array of exotic physical phenomena,including correlated insulating states,superconductivity,magnetism,topological phases,and the quantum anomalous Hall(QAH)effect.Notably,the QAH effect demonstrates substantial promise for applications in electronic and quantum computing devices with low power consumption.This article focuses on the latest developments surrounding the QAH effect in magic-angle TBG.It provides a comprehensive analysis of magnetism and topology—two crucial factors in engineering the QAH effect within magic-angle TBG.Additionally,it offers a detailed overview of the experimental realization of the QAH effect in moir´e superlattices.Furthermore,this review highlights the underlying mechanisms driving these exotic phases in moir´e materials,contributing to a deeper understanding of strongly interacting quantum systems and facilitating the manipulation of new material properties to achieve novel quantum states.展开更多
文摘The published article titled“Swainsonine inhibits invasion and the EMT process in esophageal carcinoma cells by targeting twist1”has been retracted from Oncology Research,Vol.26,No.8,2018,pp.1207–1213.
文摘目的:明确miR-130a-5p对Twist1(扭曲螺旋转录因子1)的靶向调控作用及对卵巢癌转移的影响。方法:通过基因组测序将与卵巢癌有关的差异基因筛选出来,在临床标本中验证。本研究拟通过过表达miR-130a-5p,采用Transwell, CCK-8(细胞活力检测方法), Western blot等方法,明确miR-130a-5p对Twist的调控作用。结果:miR-130a-5p是通过生物信息学分析发现的miRNA。miR-130a-5p的表达与肿瘤组织有关,可能会对病人的预后造成影响。miR-130a-5p是前期研究发现的、显著高表达针对卵巢癌的miRNA。研究表明,在抑制卵巢癌细胞增殖和转移方面,miR-130a-5p发挥了一定作用。此外,机制研究表明,卵巢癌组织中Twist1表达显著上调,miR-130a-5p能抑制卵巢癌细胞EMT(上皮间质转化)及干细胞特性。结论:(1)miR-130a-5p是新近发现的在卵巢癌中发挥重要作用的miRNA。(2)miR-130a-5p通过Twist信号通路的调节来抑制卵巢癌的进展。
基金Supported by the National Natural Science Foundation of China(12201446)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB110005)the Shuangchuang Program of Jiangsu Province(JSSCBS20220898)。
文摘It is known that monotone recurrence relations can induce a class of twist homeomorphisms on the high-dimensional cylinder,which is an extension of the class of monotone twist maps on the annulus or two-dimensional cylinder.By constructing a bounded solution of the monotone recurrence relation,the main conclusion in this paper is acquired:The induced homeomorphism has Birkhoff orbits provided there is a compact forward-invariant set.Therefore,it generalizes Angenent's results in low-dimensional cases.
基金supported by the National Key R&D Program of China(No.2023YFF1500600)the National Natural Science Foun-dation of China(Nos.12004259,12204287)+3 种基金China Postdoc-toral Science Foundation(Grant No.2022M723215)Zheng Vitto Han acknowledges the support of the Fund for Shanxi“1331 Project”Key Subjects Construction,and the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302003)Kenji Watanabe and Takashi Taniguchi acknowledge support from the JSPS KAKENHI(Grant Nos.20H00354 and 23H02052)the World Premier International Research Center Initiative(WPI),MEXT,Japan.
文摘Twist,the very degree of freedom in van der Waals heterostructures,offers a compelling avenue to manipulate and tailor their electrical and optical characteristics.In particular,moirépatterns in twisted homobilayer transition metal dichalcogenides(TMDs)lead to zone folding and miniband formation in the resulting electronic bands,holding the promise to exhibit inter-layer excitonic optical phenomena.Although some experiments have shown the existence of twist-angle-dependent intra-and inter-layer excitons in twisted MoSe2 homobilayers,electrical control of the interlayer excitons in MoSe_(2) is relatively under-explored.Here,we show the signatures of the moiréeffect on intralayer and interlayer excitons in 2H-stacked twisted MoSe2 homobilayers.Doping-and electric field-dependent photoluminescence mea-surements at low temperatures give evidence of the momentum-direct K-K intralayer excitons,and the momentum-indirect Г-K and Г-Q interlayer excitons.Our results suggest that twisted MoSe_(2) homobilayers are an intriguing platform for engineering interlayer exciton states,which may shed light on future atomically thin optoelectronic applications.
基金Supported by National Natural Science Foundation of China(Grant No.11771070).
文摘In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimensional twisted BCV spaces.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12304539,12074108,12474151,12347101)the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0568)Beijing National Laboratory for Condensed Matter Physics(Grant No.2024BNLCMPKF025)。
文摘In recent years,there has been a surge of interest in higher-order topological phases(HOTPs)across various disciplines within the field of physics.These unique phases are characterized by their ability to harbor topological protected boundary states at lower-dimensional boundaries,a distinguishing feature that sets them apart from conventional topological phases and is attributed to the higher-order bulk-boundary correspondence.Two-dimensional(2D)twisted systems offer an optimal platform for investigating HOTPs,owing to their strong controllability and experimental feasibility.Here,we provide a comprehensive overview of the latest research advancements on HOTPs in 2D twisted multilayer systems.We will mainly review the HOTPs in electronic,magnonic,acoustic,photonic and mechanical twisted systems,and finally provide a perspective of this topic.
基金support from the National Natural Science Foundation of China(Grant No.12272146)the Fundamental Research Funds for the Central Universities(Grant No.2024BRA009)the Young Top-notch Talent Cultivation Program of Hubei Province,is appreciated.
文摘Twisted polymer artificial muscles activated by thermal heating represent a new class of soft actuators capable of generating torsional actuation.The thermal torsion effect,characterized by the reversible untwisting of twisted fibers as temperature increases due to greater radial than axial thermal expansion,is crucial to the actuation performance of these artificial muscles.This study explores the thermal torsion effect of polymer muscles made of twisted Nylon 6 fibers in experimental and theoretical aspects,focusing on the interplay between material properties and temperature.It is revealed that the thermal torsion effect enhances the actuation performance of the twisted polymer actuator while the thermal softening effect diminishes it.A thermal-mechanical model incorporating both the thermal torsion effect and thermal softening effect is used to predict the recovered torque of the twisted polymer actuators.An optimal bias angle and operating temperature are identified to maximize the recovered torque.Analysis of strain and stress distributions in the cross-section of the twisted polymer fiber shows that the outer layers of the fiber predominantly contribute to the torsional actuation.This work aids in the precise control and structural optimization of the thermally-activated twisted polymer actuators.
基金supported by the National Natural Science Foundation of China(No.T2288101)the National Key Research and Development Project,China(No.2020YFC1512500)the Academic Excellence Foundation of Beijing University of Aeronautics and Astronautics(BUAA)。
文摘Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper proposes an Adaptive Terminal Sliding Combined Super TwistingControl(ATS-STC)method to address the issues of low precision,slow convergence,and poor dis-turbance rejection capability resulting from external disturbances,such as carrier air-wake and deckmotion.By introducing a nonlinear term into the sliding surface and employing an integralapproach,the proposed ATS-STC method can ensure finite-time convergence and mitigate the chat-tering problem.An adaptive law is also utilized to estimate the external disturbances,therebyenhancing the anti-disturbance performance.Then,the stability and convergence time analysis ofthe designed controller are conducted.Based on the proposed method,an Automatic Carrier Land-ing System(ACLS)is developed to perform the carrier landing control task.Furthermore,a multi-dimensional validation is carried out.For the numerical simulation test,the Terminal Sliding ModeControl(TSMC)method and Proportion Integration Differentiation(PID)method are introducedas comparison,the quantitative assessment results show that the tracking error of TSMC and PIDcan reach 1.5 times and 2 times that of the proposed method.Finally,the Hardware-in-the-Loop(HIL)test and real flight test are conducted.All the experimental results demonstrate that the pro-posed control method is more effective and precise.
基金supported by the Key Projects of Department of Education of Hunan Province,China(Grant No.21A0167)the Natural Science Foundation of Hunan Province,China(Grant No.2019JJ40532)the Talent Introducing Foundation of Central South University of Forestry and Technology(Grant No.104-0160)。
文摘In two-dimensional bilayer systems,twist-angle-dependent electronic and thermoelectric properties have garnered significant scientific interest in recent years.In this work,based on a combination of density functional theory and nonequilibrium Green’s function method,we explore the electronic and thermoelectric properties in blue-phosphorene nanoribbon-based heterojunction(BPNRHJ)with and without blue-phosphorene nanoribbon(BPNR)stack.Our calculations find that the electronic conductance and power factor can be strongly enhanced by the BPNR stack,and their enhancements can be further observed with the twist between the layers.The main reason for this is the electronic hybridization between the layers can provide new transport channels,and the twist can modulate the strength of interlayer electronic hybridization,resulting in extremely violent fluctuations in electron transmission and hence an enhanced power factor.While the phonon thermal conductance exhibits very low dependence on the layer stack and twist.Combining these factors,our results reveal that the thermoelectric performance can be greatly modulated and enhanced in twist bilayer BPNRHJ:the figure of merit will be over 2.5 in 4-4-ZBPNR@ZGNR-AA-8.8∘at 500 K.
基金supported by the Science Research Project of Hebei Education Department(Grant No.BJK2024168)the National Natural Science Foundation of China(Grant No.11904076)+1 种基金the Natural Science Foundation of Hebei(Grant No.A2019205313)Science Foundation of Hebei Normal University(Grant No.L2024J02).
文摘Recent advancements in two-dimensional van der Waals moir´e materials have unveiled the captivating landscape of moir´e physics.In twisted bilayer graphene(TBG)at‘magic angles’,strong electronic correlations give rise to a diverse array of exotic physical phenomena,including correlated insulating states,superconductivity,magnetism,topological phases,and the quantum anomalous Hall(QAH)effect.Notably,the QAH effect demonstrates substantial promise for applications in electronic and quantum computing devices with low power consumption.This article focuses on the latest developments surrounding the QAH effect in magic-angle TBG.It provides a comprehensive analysis of magnetism and topology—two crucial factors in engineering the QAH effect within magic-angle TBG.Additionally,it offers a detailed overview of the experimental realization of the QAH effect in moir´e superlattices.Furthermore,this review highlights the underlying mechanisms driving these exotic phases in moir´e materials,contributing to a deeper understanding of strongly interacting quantum systems and facilitating the manipulation of new material properties to achieve novel quantum states.