The three-way catalyst(TWC),as a promising approach to control automobile exhaust emission,has been widely studied and applied.However,it still suffers from the high light-off temperature and poor stability.Herein,we ...The three-way catalyst(TWC),as a promising approach to control automobile exhaust emission,has been widely studied and applied.However,it still suffers from the high light-off temperature and poor stability.Herein,we synthesized a multicomponent catalyst Rh/Cu-CeSn by using Cu metal doping to modify the Ce-based solid solution,which exhibited good TWC catalytic performance:the light-off temperatures for CO,NO,and C_(3)H_(6)conversion are 172℃,266℃,and 193℃,respectively.Moreover,the catalyst still maintained good activity after 12 h of the continuous reaction under high-temperature conditions.The experiments and mechanism studies reveal that due to the redox pair Cu^(+)/Cu^(2+),the Cu incorporation can effectively inhibit the Rh transition to the oxidation state and greatly enhance the catalytic activity and stability.This work provides a viable strategy for precise characteristic modulation of composite oxide supports during the fabrication of noble metal-based catalysts,which significantly reduces environmental pollution from energy applications.展开更多
This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 t...This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.展开更多
Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Z...Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Zr0.5Ti0.5Al0.5O2 catalysts was evaluated using the simulated gases. The results show that ZTA samples exhibit higher specific surface area,larger pore volume and proper surface acidic amount and acidity in comparison with ZT. The results of the catalytic test indicate that Pt/ZT and Pt/ZTA catalysts exhibit excellent low-temperature catalytic activity and lower light-off temperatures of hydrocarbon,carbon monoxide and nitrogen oxides,especially better conversion for nitrogen oxides (NOx). The addition of Al2O3 into ZT enhanced the anti-aging property of Pt/ ZTA catalysts due to the excellent textural,structural,surface acidity and thermal stability.展开更多
Pd/Ce0.67Zr0.33O2 catalyst was pretreated in different atmosphere respectively, and characterized by CO chemical adsorption, XPS, HR-TEM, H2-TPR, Raman, OSC and in situ DRIFTS to investigate the effect of the structur...Pd/Ce0.67Zr0.33O2 catalyst was pretreated in different atmosphere respectively, and characterized by CO chemical adsorption, XPS, HR-TEM, H2-TPR, Raman, OSC and in situ DRIFTS to investigate the effect of the structure properties of PdOx species on the catalytic performance for CO, HC and NOx elimination. The results show that Pd/CZ catalyst pretreated in air atmosphere has higher oxidation activity of HC due to having high Pd dispersion and strong interaction between PdOx and CZ support. Pd/CZ-H catalyst pretreated in reducing atmosphere exhibits better catalytic performance of NOx elimination because of having relatively big Pd particle size, more Pd species in metallic state and higher concentration of oxygen vacancies. While for the Pd/CZ-RG catalyst pretreated in reactant atmosphere, strong adsorption of HC species on the surface of catalysts would lead to a part of active sites being covered, which inhibits HC and NO conversions.展开更多
The interactions between metals and oxide supports,so-called metal-support interactions(MSI),are of great importance in heterogeneous catalysis.Pd-based automotive exhaust control catalysts,especially Pd-based three-w...The interactions between metals and oxide supports,so-called metal-support interactions(MSI),are of great importance in heterogeneous catalysis.Pd-based automotive exhaust control catalysts,especially Pd-based three-way catalysts (TWCs),have received considerable research attention owing to its prominent oxidation activity of HCs/CO,as well as excellent thermal stability.For Pd-based TWCs,the dispersion,chemical state and thermal stability of Pd species,which are crucial to the catalytic performance,are closely associated with interactions between metal nanoparticles and their supporting matrix.Progress on the research about MSI and utilization of MSI in advanced Pd-based three-way catalysts are reviewed here.Along with the development of advanced synthesis approaches and engine control technology,the study on MSI would play a notable role in further development of catalysts for automobile exhaust control.展开更多
TWC-equipped exhausts are widely used in gasoline-fueled vehicles to meet stringent emission regulations. The main components in TWCs are precious metals such as palladium (Pd), platinum (Pt), and rhodium (Rh) as the ...TWC-equipped exhausts are widely used in gasoline-fueled vehicles to meet stringent emission regulations. The main components in TWCs are precious metals such as palladium (Pd), platinum (Pt), and rhodium (Rh) as the active component, and inorganic oxides such as γ-alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ) and ceria-zirconia (CeO 2-ZrO 2 ) are used as the support. Interaction of precious metals and support plays an important role in the thermal stability and catalytic performance of TWCs. The support can improve the dispersion of precious metals and suppress the sintering of precious metals at high temperature. In the same, precious metals can also enhance the redox performance and oxygen storage capacity of support. This paper reviews the reaction phenomenon and mechanism of precious metals (Pt, Pd, Rh) and supports such as Al 2 O 3 , CeO 2-based composite oxides.展开更多
基金supported by the financial aid from National Science and Technology Major Project of China(No.2020YFE0204500)National Natural Science Foundation of China(Nos.22020102003,22025506 and 11975301)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2020286)。
文摘The three-way catalyst(TWC),as a promising approach to control automobile exhaust emission,has been widely studied and applied.However,it still suffers from the high light-off temperature and poor stability.Herein,we synthesized a multicomponent catalyst Rh/Cu-CeSn by using Cu metal doping to modify the Ce-based solid solution,which exhibited good TWC catalytic performance:the light-off temperatures for CO,NO,and C_(3)H_(6)conversion are 172℃,266℃,and 193℃,respectively.Moreover,the catalyst still maintained good activity after 12 h of the continuous reaction under high-temperature conditions.The experiments and mechanism studies reveal that due to the redox pair Cu^(+)/Cu^(2+),the Cu incorporation can effectively inhibit the Rh transition to the oxidation state and greatly enhance the catalytic activity and stability.This work provides a viable strategy for precise characteristic modulation of composite oxide supports during the fabrication of noble metal-based catalysts,which significantly reduces environmental pollution from energy applications.
文摘This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.
文摘Zr0.5Ti0.5O2(ZT) and Zr0.25Ti0.25Al0.5O2(ZTA) mixed oxides were prepared by co-precipitation method and characterized by low temperature adsorption-desorption,XRD and NH3-TPD. The activity of Pt/Zr0.5Ti0.5O2 and Pt/ Zr0.5Ti0.5Al0.5O2 catalysts was evaluated using the simulated gases. The results show that ZTA samples exhibit higher specific surface area,larger pore volume and proper surface acidic amount and acidity in comparison with ZT. The results of the catalytic test indicate that Pt/ZT and Pt/ZTA catalysts exhibit excellent low-temperature catalytic activity and lower light-off temperatures of hydrocarbon,carbon monoxide and nitrogen oxides,especially better conversion for nitrogen oxides (NOx). The addition of Al2O3 into ZT enhanced the anti-aging property of Pt/ ZTA catalysts due to the excellent textural,structural,surface acidity and thermal stability.
基金Project supported by the Key Program of Science Technology Department of Zhejiang Province(2018C03037)
文摘Pd/Ce0.67Zr0.33O2 catalyst was pretreated in different atmosphere respectively, and characterized by CO chemical adsorption, XPS, HR-TEM, H2-TPR, Raman, OSC and in situ DRIFTS to investigate the effect of the structure properties of PdOx species on the catalytic performance for CO, HC and NOx elimination. The results show that Pd/CZ catalyst pretreated in air atmosphere has higher oxidation activity of HC due to having high Pd dispersion and strong interaction between PdOx and CZ support. Pd/CZ-H catalyst pretreated in reducing atmosphere exhibits better catalytic performance of NOx elimination because of having relatively big Pd particle size, more Pd species in metallic state and higher concentration of oxygen vacancies. While for the Pd/CZ-RG catalyst pretreated in reactant atmosphere, strong adsorption of HC species on the surface of catalysts would lead to a part of active sites being covered, which inhibits HC and NO conversions.
基金supported by the National Key R&D Program of China (Nos.2017YFC0211102 and 2017YFC0211202)Guangdong Basic and Applied Basic Research Foundation (No.2019A1515110530)+1 种基金Shenzhen Science and Technology Program (No.JCYJ20210324140804013)Tsinghua Shenzhen International Graduate School (Nos.QD2021005N and JC_(2)021007)。
文摘The interactions between metals and oxide supports,so-called metal-support interactions(MSI),are of great importance in heterogeneous catalysis.Pd-based automotive exhaust control catalysts,especially Pd-based three-way catalysts (TWCs),have received considerable research attention owing to its prominent oxidation activity of HCs/CO,as well as excellent thermal stability.For Pd-based TWCs,the dispersion,chemical state and thermal stability of Pd species,which are crucial to the catalytic performance,are closely associated with interactions between metal nanoparticles and their supporting matrix.Progress on the research about MSI and utilization of MSI in advanced Pd-based three-way catalysts are reviewed here.Along with the development of advanced synthesis approaches and engine control technology,the study on MSI would play a notable role in further development of catalysts for automobile exhaust control.
基金National Science technology Support Plan Projects"(2012BAE06B00)
文摘TWC-equipped exhausts are widely used in gasoline-fueled vehicles to meet stringent emission regulations. The main components in TWCs are precious metals such as palladium (Pd), platinum (Pt), and rhodium (Rh) as the active component, and inorganic oxides such as γ-alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ) and ceria-zirconia (CeO 2-ZrO 2 ) are used as the support. Interaction of precious metals and support plays an important role in the thermal stability and catalytic performance of TWCs. The support can improve the dispersion of precious metals and suppress the sintering of precious metals at high temperature. In the same, precious metals can also enhance the redox performance and oxygen storage capacity of support. This paper reviews the reaction phenomenon and mechanism of precious metals (Pt, Pd, Rh) and supports such as Al 2 O 3 , CeO 2-based composite oxides.