The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in...The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility.展开更多
Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade...Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols.展开更多
Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and s...Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and security.One of the core features of TSN is traffic scheduling with bounded low delay in the network.However,traffic scheduling schemes in TSN are usually synthesized offline and lack dynamism.To implement incremental scheduling of newly arrived traffic in TSN,we propose a Dynamic Response Incremental Scheduling(DR-IS)method for time-sensitive traffic and deploy it on a software-defined time-sensitive network architecture.Under the premise of meeting the traffic scheduling requirements,we adopt two modes,traffic shift and traffic exchange,to dynamically adjust the time slot injection position of the traffic in the original scheme,and determine the sending offset time of the new timesensitive traffic to minimize the global traffic transmission jitter.The evaluation results show that DRIS method can effectively control the large increase of traffic transmission jitter in incremental scheduling without affecting the transmission delay,thus realizing the dynamic incremental scheduling of time-sensitive traffic in TSN.展开更多
In the upcoming sixth-generation(6G)era,the demand for constructing a wide-area time-sensitive Internet of Things(IoT)continues to increase.As conventional cellular technologies are difficult to directly use for wide-...In the upcoming sixth-generation(6G)era,the demand for constructing a wide-area time-sensitive Internet of Things(IoT)continues to increase.As conventional cellular technologies are difficult to directly use for wide-area time-sensitive IoT,it is beneficial to use non-terrestrial infrastructures,including satellites and unmanned aerial vehicles(UAVs).Thus,we can build a non-terrestrial network(NTN)using a cell-free architecture.Driven by the time-sensitive requirements and uneven distribution of IoT devices,the NTN must be empowered using mobile edge computing(MEC)while providing oasisoriented on-demand coverage for devices.Nevertheless,communication and MEC systems are coupled with each other under the influence of a complex propagation environment in the MEC-empowered NTN,which makes it difficult to coordinate the resources.In this study,we propose a process-oriented framework to design communication and MEC systems in a time-division manner.In this framework,large-scale channel state information(CSI)is used to characterize the complex propagation environment at an affordable cost,where a nonconvex latency minimization problem is formulated.Subsequently,the approximated problem is provided,and it can be decomposed into sub-problems.These sub-problems are then solved iteratively.The simulation results demonstrated the superiority of the proposed process-oriented scheme over other algorithms,implied that the payload deployments of UAVs should be appropriately predesigned to improve the efficiency of using resources,and confirmed that it is advantageous to integrate NTN with MEC for wide-area time-sensitive IoT.展开更多
随着对新一代飞机智能化、自动化的要求越来越高,对机载总线数据传输的实时性、确定性、可靠性也提出了更高要求。OPC UA over TSN作为当前航空领域重要的创新技术,通过提供一个实时开放互联的工业通信网络架构,满足航电系统确定性时延...随着对新一代飞机智能化、自动化的要求越来越高,对机载总线数据传输的实时性、确定性、可靠性也提出了更高要求。OPC UA over TSN作为当前航空领域重要的创新技术,通过提供一个实时开放互联的工业通信网络架构,满足航电系统确定性时延和高可靠的需求,弥补传统机载总线在易用性、互操作性、带宽上的不足。该设计详细介绍了时间敏感网络(TSN)协议和开放平台通信统一架构(OPC UA)技术的基本内容,通过分析OPC UA over TSN技术的发展现状,提出了基于OPC UA over TSN的网络架构和配置架构。该技术代表着未来机载总线的发展趋势,具有很大的应用潜力。展开更多
Deterministic transmission plays a vital role in industrial networks.The time-sensitive network(TSN)protocol family offers a promising paradigm for transmitting time-critical data.To achieve low latency and high Quali...Deterministic transmission plays a vital role in industrial networks.The time-sensitive network(TSN)protocol family offers a promising paradigm for transmitting time-critical data.To achieve low latency and high Quality of Service(QoS)in TSN,appropriate data flow scheduling is needed under the given network topology and data flow requirements to fully utilize the potential of TSN.Both time-triggered flows and sporadic flows can carry high-priority data and need to be considered jointly to eliminate the effects of each other.To this end,in this work,we investigate the challenging mixed-flow scheduling problem and propose a novel diffusion-based algorithm,DiffTSN,to solve the joint routing and scheduling problem of mixed flows.We transform the sporadic flows into probabilistic flows and design certain mechanisms to fit the nature of these probabilistic flows.For routing,we transform the problem into a diffusion policy and constraint denoising process with a value guide to achieve a better routing policy.For scheduling,we adopt a first-valid-time-slot algorithm to determine the start transmission time of the flows.We train and evaluate DiffTSN in our TSN simulator.Experiments show that DiffTSN outperforms state-of-the-art algorithms in various metrics.展开更多
Time-sensitive networking(TSN)is an important research area for updating the infrastructure of industrial Internet of Things.As a product of the integration of the operation technology(OT)and the information technolog...Time-sensitive networking(TSN)is an important research area for updating the infrastructure of industrial Internet of Things.As a product of the integration of the operation technology(OT)and the information technology(IT),it meets the real-time and deterministic nature of industrial control and is compatible with Ethernet to support the mixed transmission of industrial control data and Ethernet data.This paper systematically summarizes and analyzes the shortcomings of the current mixed transmission technologies of the bursty flows and the periodic flows.To conquer these shortages,we propose a predictive mixed-transmission scheme of the bursty flows and the periodic flows.The core idea is to use the predictability of timetriggered transmission of TSN to further reduce bandwidth loss of the previous mixed-transmission methods.This paper formalizes the probabilistic model of the predictive mixed transmission mechanism and proves that the proposed mecha⁃nism can effectively reduce the loss of bandwidth.Finally,based on the formalized probabilistic model,we simulate the bandwidth loss of the proposed mechanism.The results demonstrate that compared with the previous mixed-transmission method,the bandwidth loss of the pro⁃posed mechanism achieves a 79.48%reduction on average.展开更多
For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service...For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states.展开更多
基金supported in part by National Key R&D Program of China(Grant No.2022YFC3803700)in part by the National Natural Science Foundation of China(Grant No.92067102)in part by the project of Beijing Laboratory of Advanced Information Networks.
文摘The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility.
基金this project under Geran Putra Inisiatif(GPI)with reference of GP-GPI/2023/976210。
文摘Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols.
基金supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province(224000510002)。
文摘Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and security.One of the core features of TSN is traffic scheduling with bounded low delay in the network.However,traffic scheduling schemes in TSN are usually synthesized offline and lack dynamism.To implement incremental scheduling of newly arrived traffic in TSN,we propose a Dynamic Response Incremental Scheduling(DR-IS)method for time-sensitive traffic and deploy it on a software-defined time-sensitive network architecture.Under the premise of meeting the traffic scheduling requirements,we adopt two modes,traffic shift and traffic exchange,to dynamically adjust the time slot injection position of the traffic in the original scheme,and determine the sending offset time of the new timesensitive traffic to minimize the global traffic transmission jitter.The evaluation results show that DRIS method can effectively control the large increase of traffic transmission jitter in incremental scheduling without affecting the transmission delay,thus realizing the dynamic incremental scheduling of time-sensitive traffic in TSN.
基金the National Key R&D Program of China(2018YFA0701601 and 2020YFA0711301)the National Natural Science Foundation of China(61771286,61941104,and 61922049)the Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute.
文摘In the upcoming sixth-generation(6G)era,the demand for constructing a wide-area time-sensitive Internet of Things(IoT)continues to increase.As conventional cellular technologies are difficult to directly use for wide-area time-sensitive IoT,it is beneficial to use non-terrestrial infrastructures,including satellites and unmanned aerial vehicles(UAVs).Thus,we can build a non-terrestrial network(NTN)using a cell-free architecture.Driven by the time-sensitive requirements and uneven distribution of IoT devices,the NTN must be empowered using mobile edge computing(MEC)while providing oasisoriented on-demand coverage for devices.Nevertheless,communication and MEC systems are coupled with each other under the influence of a complex propagation environment in the MEC-empowered NTN,which makes it difficult to coordinate the resources.In this study,we propose a process-oriented framework to design communication and MEC systems in a time-division manner.In this framework,large-scale channel state information(CSI)is used to characterize the complex propagation environment at an affordable cost,where a nonconvex latency minimization problem is formulated.Subsequently,the approximated problem is provided,and it can be decomposed into sub-problems.These sub-problems are then solved iteratively.The simulation results demonstrated the superiority of the proposed process-oriented scheme over other algorithms,implied that the payload deployments of UAVs should be appropriately predesigned to improve the efficiency of using resources,and confirmed that it is advantageous to integrate NTN with MEC for wide-area time-sensitive IoT.
文摘随着对新一代飞机智能化、自动化的要求越来越高,对机载总线数据传输的实时性、确定性、可靠性也提出了更高要求。OPC UA over TSN作为当前航空领域重要的创新技术,通过提供一个实时开放互联的工业通信网络架构,满足航电系统确定性时延和高可靠的需求,弥补传统机载总线在易用性、互操作性、带宽上的不足。该设计详细介绍了时间敏感网络(TSN)协议和开放平台通信统一架构(OPC UA)技术的基本内容,通过分析OPC UA over TSN技术的发展现状,提出了基于OPC UA over TSN的网络架构和配置架构。该技术代表着未来机载总线的发展趋势,具有很大的应用潜力。
基金supported by the Guangdong Science and Technology Program under Grant Nos.2024B0101040007 and 2024B0101020004the Guangdong Basic and Applied Basic Research Foundation under Grant No.2023B1515120058+5 种基金the National Science Foundation of China under Grant No.62172455the Guangdong Science and Technology Department Pearl River Talent Program under Grant No.2019QN01X140the Guangzhou Basic and Applied Basic Research Program under Grant No.2024A04J6367the Fundamental Research Funds for the Central Universities of China under Grant No.24qnpy138the Program for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant No.2017ZT07X355the Department of Science and Technology of Guangdong Province of China under Grant No.2022A0505050028.
文摘Deterministic transmission plays a vital role in industrial networks.The time-sensitive network(TSN)protocol family offers a promising paradigm for transmitting time-critical data.To achieve low latency and high Quality of Service(QoS)in TSN,appropriate data flow scheduling is needed under the given network topology and data flow requirements to fully utilize the potential of TSN.Both time-triggered flows and sporadic flows can carry high-priority data and need to be considered jointly to eliminate the effects of each other.To this end,in this work,we investigate the challenging mixed-flow scheduling problem and propose a novel diffusion-based algorithm,DiffTSN,to solve the joint routing and scheduling problem of mixed flows.We transform the sporadic flows into probabilistic flows and design certain mechanisms to fit the nature of these probabilistic flows.For routing,we transform the problem into a diffusion policy and constraint denoising process with a value guide to achieve a better routing policy.For scheduling,we adopt a first-valid-time-slot algorithm to determine the start transmission time of the flows.We train and evaluate DiffTSN in our TSN simulator.Experiments show that DiffTSN outperforms state-of-the-art algorithms in various metrics.
基金sponsored in part by the National Key Research and Development Project under Grants Nos. 2018YFB1308601 and 2017YFE0119300the National Natural Science Foundation of China under Grant No. 62002013+1 种基金the Project funded by China Postdoctoral Science Foundation Grants Nos. 2019M660439 and 2020T130049the Industry-University-Research Cooperation Fund of ZTE Corporation.
文摘Time-sensitive networking(TSN)is an important research area for updating the infrastructure of industrial Internet of Things.As a product of the integration of the operation technology(OT)and the information technology(IT),it meets the real-time and deterministic nature of industrial control and is compatible with Ethernet to support the mixed transmission of industrial control data and Ethernet data.This paper systematically summarizes and analyzes the shortcomings of the current mixed transmission technologies of the bursty flows and the periodic flows.To conquer these shortages,we propose a predictive mixed-transmission scheme of the bursty flows and the periodic flows.The core idea is to use the predictability of timetriggered transmission of TSN to further reduce bandwidth loss of the previous mixed-transmission methods.This paper formalizes the probabilistic model of the predictive mixed transmission mechanism and proves that the proposed mecha⁃nism can effectively reduce the loss of bandwidth.Finally,based on the formalized probabilistic model,we simulate the bandwidth loss of the proposed mechanism.The results demonstrate that compared with the previous mixed-transmission method,the bandwidth loss of the pro⁃posed mechanism achieves a 79.48%reduction on average.
基金supported by Research and Application of Edge IoT Technology for Distributed New Energy Consumption in Distribution Areas,Project Number(5108-202218280A-2-394-XG)。
文摘For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states.