期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于IEC模块和双流卷积神经网络的钻孔立杆机钻机轴承故障诊断方法
1
作者 杨淼 殷鹏 +3 位作者 曾小军 陈明 杨文 贺继林 《湖南电力》 2025年第5期133-140,共8页
为实现有效的轴承故障诊断,提出一种基于集成InceptionV2、高效通道注意力(efficient channel attention,ECA)、卷积块注意力模块(convolutional block attention module,CBAM)和双流卷积神经网络(two-stream convolutional neural netw... 为实现有效的轴承故障诊断,提出一种基于集成InceptionV2、高效通道注意力(efficient channel attention,ECA)、卷积块注意力模块(convolutional block attention module,CBAM)和双流卷积神经网络(two-stream convolutional neural network,TSCNN)的轴承故障诊断方法。首先,利用快速傅里叶变换(fast fourier transform,FFT)和连续小波变换(continuous wavelet transform,CWT)将原始振动信号转换成一维数据和二维时频图像。随后,构建TSCNN融合模型,将得到的小波时频图像和FFT谱作为输入,利用InceptionV2和ECANet-CBAM改进模块提取时频图像的空间特征,将得到的双层特征信息融合到Softmax层中完成故障分类。最后,基于滚动轴承故障标准数据集进行对比分析,结果表明,所提出故障诊断方法诊断准确率更高。 展开更多
关键词 钻孔立杆机 轴承 故障诊断 IEC模块 tscnn
在线阅读 下载PDF
Behavior Recognition of the Elderly in Indoor Environment Based on Feature Fusion of Wi-Fi Perception and Videos 被引量:3
2
作者 Yuebin Song Chunling Fan 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期142-155,共14页
With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors ... With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors is a meaningful study.Video-based action recognition tasks are easily affected by object occlusion and weak ambient light,resulting in poor recognition performance.Therefore,this paper proposes an indoor human behavior recognition method based on wireless fidelity(Wi-Fi)perception and video feature fusion by utilizing the ability of Wi-Fi signals to carry environmental information during the propagation process.This paper uses the public WiFi-based activity recognition dataset(WIAR)containing Wi-Fi channel state information and essential action videos,and then extracts video feature vectors and Wi-Fi signal feature vectors in the datasets through the two-stream convolutional neural network and standard statistical algorithms,respectively.Then the two sets of feature vectors are fused,and finally,the action classification and recognition are performed by the support vector machine(SVM).The experiments in this paper contrast experiments between the two-stream network model and the methods in this paper under three different environments.And the accuracy of action recognition after adding Wi-Fi signal feature fusion is improved by 10%on average. 展开更多
关键词 human behavior recognition two-stream convolution neural network channel status information feature fusion support vector machine(SVM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部