We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine func...We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function,their precise function in spinal cord injury remains unclear.To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury,we conducted singlecell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury.Subsequently,we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes.The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes.Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs,104 long non-coding RNAs,720 circular RNAs,and 14 microRNAs compared with the control group.Construction of a competing endogenous RNA network identified the following hub genes:tuberous sclerosis 2(Tsc2),solute carrier family 16 member 3(Slc16a3),and forkhead box protein P1(Foxp1).Notably,a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury.TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone.Furthermore,in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells.Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways.In addition,Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways.Collectively,these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.展开更多
基金supported by the National Natural Science Foundation of China,No.81801907(to NC)Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research,No.ZDSYS20230626091402006(to NC)+2 种基金Sanming Project of Medicine in Shenzhen,No.SZSM201911002(to SL)Foundation of Shenzhen Committee for Science and Technology Innovation,Nos.JCYJ20230807110310021(to NC),JCYJ20230807110259002(to JL)Science and Technology Program of Guangzhou,No.2024A04J4716(to TL)。
文摘We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function,their precise function in spinal cord injury remains unclear.To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury,we conducted singlecell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury.Subsequently,we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes.The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes.Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs,104 long non-coding RNAs,720 circular RNAs,and 14 microRNAs compared with the control group.Construction of a competing endogenous RNA network identified the following hub genes:tuberous sclerosis 2(Tsc2),solute carrier family 16 member 3(Slc16a3),and forkhead box protein P1(Foxp1).Notably,a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury.TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone.Furthermore,in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells.Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways.In addition,Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways.Collectively,these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.
文摘目的检测并分析2例中国汉族结节性硬化症(tuberous sclerosis complex,TSC)患者TSC2基因突变特点。方法采用直接测序法对31个家系的34例TSC患者及其父母33名进行TSC1基因和TSC2基因全长编码外显子基因检测。测序后发现第25家系先证者为TSC2基因外显子40的框内移码突变5238-5255 del 18 bp,第11家系先证者为TSC2基因外显子23错义突变Arg905Trp。进一步采用变性凝胶电泳及内切酶技术在患者与120名正常对照中检测这两种突变。结果第25家系先证者外显子40出现5238-5255d el CATCAAGCGGCTCCGCCA突变,导致6个氨基酸缺失的框内移码突变(1746-1751del His-Ile-Lys-Arg-Leu-Gly),第11家系先证者外显子23出现2713 C>T(Arg905Trp)错义突变,2713位碱基由胞嘧啶(C)改变为胸腺嘧啶(T),导致第905位氨基酸精氨酸被色氨酸替代。120名正常对照未检测到这两种突变。结论TSC2基因5238-5255 del 18 bp及2713 C>T突变为两种致病性突变。