Surrogate-Based Optimization(SBO) is becoming increasingly popular since it can remarkably reduce the computational cost for design optimizations based on high-fidelity and expensive numerical analyses. However, for c...Surrogate-Based Optimization(SBO) is becoming increasingly popular since it can remarkably reduce the computational cost for design optimizations based on high-fidelity and expensive numerical analyses. However, for complicated optimization problems with a large design space, many design variables, and strong nonlinearity, SBO converges slowly and shows imperfection in local exploitation. This paper proposes a trust region method within the framework of an SBO process based on the Kriging model. In each refinement cycle, new samples are selected by a certain design of experiment method within a variable design space, which is sequentially updated by the trust region method. A multi-dimensional trust-region radius is proposed to improve the adaptability of the developed methodology. Further, the scale factor and the limit factor of the trust region are studied to evaluate their effects on the optimization process. Thereafter, different SBO methods using error-based exploration, prediction-based exploitation, refinement based on the expected improvement function, a hybrid refinement strategy, and the developed trust-regionbased refinement are utilized in four analytical tests. Further, the developed optimization methodology is employed in the drag minimization of an RAE2822 airfoil. Results indicate that it has better robustness and local exploitation capability in comparison with those of other SBO展开更多
A trust region method combining with nonmonotone technique is proposed tor solving symmetric nonlinear equations. The global convergence of the given method will be established under suitable conditions. Numerical res...A trust region method combining with nonmonotone technique is proposed tor solving symmetric nonlinear equations. The global convergence of the given method will be established under suitable conditions. Numerical results show that the method is interesting for the given problems.展开更多
A new trust region algorithm for solving convex LC 1 optimization problem is presented.It is proved that the algorithm is globally convergent and the rate of convergence is superlinear under some reasonable assum...A new trust region algorithm for solving convex LC 1 optimization problem is presented.It is proved that the algorithm is globally convergent and the rate of convergence is superlinear under some reasonable assumptions.展开更多
Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The adva...Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.展开更多
A trust region method is proposed to solve the problem of microwave tomography,which is very difficult to be solved for its ill-posedness and nonlinearity. Compared with the Levenberg-Marquardt method, this method int...A trust region method is proposed to solve the problem of microwave tomography,which is very difficult to be solved for its ill-posedness and nonlinearity. Compared with the Levenberg-Marquardt method, this method introduces more a priori knowledge and might obtain better results, though the two methods are equal in some cases.展开更多
The trust region method plays an important role in solving optimization problems. In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems. Actually, we ...The trust region method plays an important role in solving optimization problems. In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems. Actually, we combine a popular nonmonotone technique with an adaptive trust region algorithm. The new ratio to adjusting the next trust region radius is different from the ratio in the traditional trust region methods. Under some appropriate conditions, we show that the new algorithm has good global convergence and superlinear convergence.展开更多
In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorith...In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorithm under reasonable assumptions.展开更多
In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of comput...In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.展开更多
A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided proje...A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided projection and the strategy of the unconstrained trust region methods. It keeps the good convergence properties of the unconstrained case and has the merits of the projection method. In some sense, our algorithm can be regarded as an extension and improvement of the projected type algorithm.展开更多
In this paper we present a nonmonotone trust region method for nonlinear least squares problems with zero-residual and prove its convergence properties. The extensive numerical results are reported which show that the...In this paper we present a nonmonotone trust region method for nonlinear least squares problems with zero-residual and prove its convergence properties. The extensive numerical results are reported which show that the nonmonotone trust region method is generally superior to the usual trust region method.展开更多
In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our alg...In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our algorithm utilizes non-monotone Wolfe line search to get the next point if a trial step is not adopted. Thus, it can reduce the number of solving sub-problems. Theoretical analysis shows that the new proposed method has a global convergence under some mild conditions.展开更多
The secant methods discussed by Fontecilla (in 1988) are considerably revised through employing a trust region multiplier strategy and introducing a nondifferentiable merit function. In this paper the secant methods a...The secant methods discussed by Fontecilla (in 1988) are considerably revised through employing a trust region multiplier strategy and introducing a nondifferentiable merit function. In this paper the secant methods are also improved by adding a dogleg typed movement which allows to overcome a phenomena similar to the Maratos effect. Furthermore, these algorithms are analyzed and global convergence theorems as well as local superlinear convergence rate are proved.展开更多
为解决配网对新能源承载力不足的问题,文中提出了一种考虑软开关(Soft Open Point,SOP)和负荷主动电压控制的联合规划模型和求解方法。建立应用于配电网规划的SOP数学模型,分别针对多项式形式和指数形式的负荷电压特性建立线性化模型。...为解决配网对新能源承载力不足的问题,文中提出了一种考虑软开关(Soft Open Point,SOP)和负荷主动电压控制的联合规划模型和求解方法。建立应用于配电网规划的SOP数学模型,分别针对多项式形式和指数形式的负荷电压特性建立线性化模型。以分布式新能源承载力、投资成本和运行成本为目标,建立有源配网两阶段随机二阶锥规划模型,对SOP、电容器组以及分布式新能源等设备的选址定容及其日内运行策略做出决策。考虑新能源、负荷和能源价格的不确定性,提出了基于K均值的场景聚类方法,提出了基于信赖域法的Benders分解算法来求解所提模型。通过改进51节点系统验证了所提模型的有效性和正确性,并分析了SOP与主动电压控制对新能源承载力的影响。展开更多
基金co-supported by the National Natural Science Foundation of China (No. 11502209)the Free Research Projects of the Central University Funding of China (No. 3102015ZY007)
文摘Surrogate-Based Optimization(SBO) is becoming increasingly popular since it can remarkably reduce the computational cost for design optimizations based on high-fidelity and expensive numerical analyses. However, for complicated optimization problems with a large design space, many design variables, and strong nonlinearity, SBO converges slowly and shows imperfection in local exploitation. This paper proposes a trust region method within the framework of an SBO process based on the Kriging model. In each refinement cycle, new samples are selected by a certain design of experiment method within a variable design space, which is sequentially updated by the trust region method. A multi-dimensional trust-region radius is proposed to improve the adaptability of the developed methodology. Further, the scale factor and the limit factor of the trust region are studied to evaluate their effects on the optimization process. Thereafter, different SBO methods using error-based exploration, prediction-based exploitation, refinement based on the expected improvement function, a hybrid refinement strategy, and the developed trust-regionbased refinement are utilized in four analytical tests. Further, the developed optimization methodology is employed in the drag minimization of an RAE2822 airfoil. Results indicate that it has better robustness and local exploitation capability in comparison with those of other SBO
基金Supported by SF of Guangxi University(X061041)Supported by NSF of China(10761001)
文摘A trust region method combining with nonmonotone technique is proposed tor solving symmetric nonlinear equations. The global convergence of the given method will be established under suitable conditions. Numerical results show that the method is interesting for the given problems.
基金Supported by the National Natural Science Foundation of P.R.China(1 9971 0 0 2 ) and the Subject ofBeijing Educational Committ
文摘A new trust region algorithm for solving convex LC 1 optimization problem is presented.It is proved that the algorithm is globally convergent and the rate of convergence is superlinear under some reasonable assumptions.
文摘Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.
基金Supported by the National Natural Science Foundation of China (10231060), the Special Research Found of Doctoral Program of Higher Education of China(200d0319003 ), the Research Project of Xuzhou Institute of Technology( XKY200622).
文摘A trust region method is proposed to solve the problem of microwave tomography,which is very difficult to be solved for its ill-posedness and nonlinearity. Compared with the Levenberg-Marquardt method, this method introduces more a priori knowledge and might obtain better results, though the two methods are equal in some cases.
文摘The trust region method plays an important role in solving optimization problems. In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems. Actually, we combine a popular nonmonotone technique with an adaptive trust region algorithm. The new ratio to adjusting the next trust region radius is different from the ratio in the traditional trust region methods. Under some appropriate conditions, we show that the new algorithm has good global convergence and superlinear convergence.
基金Supported by CERG: CityU 101005 of the Government of Hong Kong SAR, Chinathe National Natural ScienceFoundation of China, the Specialized Research Fund of Doctoral Program of Higher Education of China (Grant No.20040319003)the Natural Science Fund of Jiangsu Province of China (Grant No. BK2006214)
文摘In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorithm under reasonable assumptions.
基金Supported by the National Natural Science Foundation of China (10871130)the Research Fund for the Doctoral Program of Higher Education of China (20093127110005)the Scientific Computing Key Laboratory of Shanghai Universities
文摘In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.
文摘A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided projection and the strategy of the unconstrained trust region methods. It keeps the good convergence properties of the unconstrained case and has the merits of the projection method. In some sense, our algorithm can be regarded as an extension and improvement of the projected type algorithm.
基金State Major Key Project for Basic ResearchesDecision Making and Information System Laboratory+1 种基金 Academy of Science of China Natural Science Foundation of Tsinghua University.
文摘In this paper we present a nonmonotone trust region method for nonlinear least squares problems with zero-residual and prove its convergence properties. The extensive numerical results are reported which show that the nonmonotone trust region method is generally superior to the usual trust region method.
文摘In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our algorithm utilizes non-monotone Wolfe line search to get the next point if a trial step is not adopted. Thus, it can reduce the number of solving sub-problems. Theoretical analysis shows that the new proposed method has a global convergence under some mild conditions.
基金Supported by Science and Technology Foundation of Shanghai Higher Education
文摘The secant methods discussed by Fontecilla (in 1988) are considerably revised through employing a trust region multiplier strategy and introducing a nondifferentiable merit function. In this paper the secant methods are also improved by adding a dogleg typed movement which allows to overcome a phenomena similar to the Maratos effect. Furthermore, these algorithms are analyzed and global convergence theorems as well as local superlinear convergence rate are proved.
文摘为解决配网对新能源承载力不足的问题,文中提出了一种考虑软开关(Soft Open Point,SOP)和负荷主动电压控制的联合规划模型和求解方法。建立应用于配电网规划的SOP数学模型,分别针对多项式形式和指数形式的负荷电压特性建立线性化模型。以分布式新能源承载力、投资成本和运行成本为目标,建立有源配网两阶段随机二阶锥规划模型,对SOP、电容器组以及分布式新能源等设备的选址定容及其日内运行策略做出决策。考虑新能源、负荷和能源价格的不确定性,提出了基于K均值的场景聚类方法,提出了基于信赖域法的Benders分解算法来求解所提模型。通过改进51节点系统验证了所提模型的有效性和正确性,并分析了SOP与主动电压控制对新能源承载力的影响。