湍流边界层中的相干结构是壁面摩擦阻力的主要来源。通过研究超疏水壁面对相干结构的影响,揭示其减阻机理。利用高时间分辨率粒子图像测速技术(TRPIV),分别对流速为0.165m/s的亲水壁面和超疏水壁面平板湍流边界层进行测量,得到了2种壁...湍流边界层中的相干结构是壁面摩擦阻力的主要来源。通过研究超疏水壁面对相干结构的影响,揭示其减阻机理。利用高时间分辨率粒子图像测速技术(TRPIV),分别对流速为0.165m/s的亲水壁面和超疏水壁面平板湍流边界层进行测量,得到了2种壁面瞬时速度矢量场的大样本时间序列。通过对比分析2种壁面的平均速度剖面和湍流度,得到了5.39%的减阻效果。通过二维空间两点相关函数的方法定义并提取相干结构,对比得到超疏水壁面能够有效减小相干结构流向尺度的结论。进一步采用λ ci 准则对发卡涡头进行识别,并以此为条件事件对其周围的脉动速度分布情况进行线性随机估计。结果表明:超疏水壁面能够有效削弱单个发卡涡头的强度,并且能够影响其周围发卡涡包结构的组织形式,整体减弱涡包下方近壁区低速流体质点的流向脉动,从而有效减小壁面摩擦阻力。展开更多
Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism o...Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism of drag-reducing solution from the view of coherent structures manipulation. The streamwise mean velocity and Reynolds stress profiles in the solution were compared with those in water. After adding the polymer solution, the Reynolds stress in the near-wall area decreases significantly. The result relates tightly to the decease of the coherent structures' bursting. The spatial topology of coherent structures during bursts has been extracted by the new mu-level criterion based on locally averaged velocity structure function. The effect of polymers on turbulent coherent structures mainly reflects in the intensity, not in the shape. In the solution, it is by suppressing the coherent structures that the wall friction is reduced.展开更多
The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry...The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry (TRPIV) system is used to measure the instantaneous three-dimensional-three-component (3D-3C) velocity field. The momentum thickness based Reynolds number is about 2 460. The topological information in the log-law region is obtained experimentally. It is found that the existence of the quadrupole topological structure implies a three-pair hairpin-like vortex packet, which is in connection with the low/high-speed streak. An idealized 3D topological model is then proposed to characterize the observed hairpin vortex packet and low/high-speed streak.展开更多
The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis wa...The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis was based on a time series of three-dimensional and three-component (3D-3C) velocity fields of the flat plate turbulent boundary layer (TBL) measured by a Tomographic and Time-resolved PIV (Tomo TRPIV) system. Using multi-resolution wavelet transform and conditional sampling method, we extracted the intrinsic topologies and found that the streak structures appear in bar-like patterns. Furthermore, we seized locations and velocity information of transient CS, and then calculated the propagation velocity of CS based on spatial-temporal cross-correlation scanning. This laid a foundation for further studies on relevant dynamics properties.展开更多
Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physic...Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physical mechanism of the stretch and compression of multi-scale vortex structures in the wall-bounded turbulence, the topological characteristics of turbulence statistics in logarithmic layer were illustrated by local-averaged velocity structure function. During coherent structures bursting, results reveal that the topological structures of velocity gradients, velocity strain rates and vorticities behave as antisymmetric quadrupole modes. A three-layer antisymmetric quadrupole vortex packet confirms that there is a tight relationship between the outer layer and the near-wall layer.展开更多
文摘湍流边界层中的相干结构是壁面摩擦阻力的主要来源。通过研究超疏水壁面对相干结构的影响,揭示其减阻机理。利用高时间分辨率粒子图像测速技术(TRPIV),分别对流速为0.165m/s的亲水壁面和超疏水壁面平板湍流边界层进行测量,得到了2种壁面瞬时速度矢量场的大样本时间序列。通过对比分析2种壁面的平均速度剖面和湍流度,得到了5.39%的减阻效果。通过二维空间两点相关函数的方法定义并提取相干结构,对比得到超疏水壁面能够有效减小相干结构流向尺度的结论。进一步采用λ ci 准则对发卡涡头进行识别,并以此为条件事件对其周围的脉动速度分布情况进行线性随机估计。结果表明:超疏水壁面能够有效削弱单个发卡涡头的强度,并且能够影响其周围发卡涡包结构的组织形式,整体减弱涡包下方近壁区低速流体质点的流向脉动,从而有效减小壁面摩擦阻力。
基金supported by the National Natural Science Foundation of China (11272233)National Basic Research Program (973 Program) (2012CB720101)2012 opening subjects of The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences
文摘Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism of drag-reducing solution from the view of coherent structures manipulation. The streamwise mean velocity and Reynolds stress profiles in the solution were compared with those in water. After adding the polymer solution, the Reynolds stress in the near-wall area decreases significantly. The result relates tightly to the decease of the coherent structures' bursting. The spatial topology of coherent structures during bursts has been extracted by the new mu-level criterion based on locally averaged velocity structure function. The effect of polymers on turbulent coherent structures mainly reflects in the intensity, not in the shape. In the solution, it is by suppressing the coherent structures that the wall friction is reduced.
基金supported by the National Natural Science Foundation of China (Grant Nos.12202310,12202309,1233201712202309,and 12332017)Chinesisch-Deutsche Zentrum für Wissenschaftsförderung (Grant No.GZ1575)China Postdoctoral Science Foundation (Grant No.2022M712357).
基金Project supported by the National Natural Science Foundation of China(Nos.1332006,11272233,11202122,and 11411130150)the National Fundamental Research Program of China(973 Program)(No.2012CB720101)
文摘The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry (TRPIV) system is used to measure the instantaneous three-dimensional-three-component (3D-3C) velocity field. The momentum thickness based Reynolds number is about 2 460. The topological information in the log-law region is obtained experimentally. It is found that the existence of the quadrupole topological structure implies a three-pair hairpin-like vortex packet, which is in connection with the low/high-speed streak. An idealized 3D topological model is then proposed to characterize the observed hairpin vortex packet and low/high-speed streak.
基金supported by the National Natural Science Foundation of China(11332006,11272233,and 11411130150)the National Basic Research Programm of China(2012CB720101)
文摘The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis was based on a time series of three-dimensional and three-component (3D-3C) velocity fields of the flat plate turbulent boundary layer (TBL) measured by a Tomographic and Time-resolved PIV (Tomo TRPIV) system. Using multi-resolution wavelet transform and conditional sampling method, we extracted the intrinsic topologies and found that the streak structures appear in bar-like patterns. Furthermore, we seized locations and velocity information of transient CS, and then calculated the propagation velocity of CS based on spatial-temporal cross-correlation scanning. This laid a foundation for further studies on relevant dynamics properties.
基金supported by the National Natural Science Fundation of China (11272233)National Basic Research Program (973 Program) (2012CB720101)2013 Opening Fund of LNM,Institute of Mechanics,Chinese Academy of Sciences
文摘Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physical mechanism of the stretch and compression of multi-scale vortex structures in the wall-bounded turbulence, the topological characteristics of turbulence statistics in logarithmic layer were illustrated by local-averaged velocity structure function. During coherent structures bursting, results reveal that the topological structures of velocity gradients, velocity strain rates and vorticities behave as antisymmetric quadrupole modes. A three-layer antisymmetric quadrupole vortex packet confirms that there is a tight relationship between the outer layer and the near-wall layer.
基金supported by the National Natural Science Foundation of China(No.51366010)the Inner Mongolia Autonomous Region Open Major Basic Research Project(No.20120905),China