A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-sc...A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-scale(SGS)turbulent fluxes associated with convective clouds in idealized tropical cyclone(TC)simulations.To evaluate the capability of the modified scheme in simulating real TCs,two sets of simulations of TC Soudelor(2015),one with the modified scheme and the other with the original scheme,are conducted.Comparisons with observations and coarse-grained results from large eddy simulation benchmarks demonstrate that the modified scheme improves the forecasting of the intensity and structure,as well as the SGS turbulent fluxes of Soudelor.Using the modified turbulence scheme,a TC with stronger intensity,smaller size,a shallower but stronger inflow layer,and a more intense but less inclined convective updraft is simulated.The rapid intensification process and secondary eyewall features can also be captured better by the modified scheme.By analyzing the mechanism by which turbulent transport impacts the intensity and structure of TCs,it is shown that accurately representing the turbulent transport associated with convective clouds above the planetary boundary layer helps to initiate the TC spin-up process.展开更多
GENERAL Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biom...GENERAL Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biomedicine and related sciences.The Journal invites concise reports of original research in all areas of tropical biomedicine and related fields,both experimental and clinical,including modern,traditional and epidemiological studies,from any part of the world.Review articles based primarily on authors'own research on internationally important topics will be accepted.Short communications and letters to the editor are also welcome.Authors are requested to submit a covering letter indicating that their manuscript represents original unpublished material that has not been and will not be published elsewhere(if accepted).This restriction does not apply to results published as abstracts of communications,letters to the editor or as preliminary reports.By submitting a manuscript the authors warrant that they have obtained permission to use any copyrighted or previously published materials.展开更多
Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biomedicine ...Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biomedicine and related sciences.The Journal invites concise reports of original research in all areas of tropical biomedicine and related fields,both experimental and clinical,including modern,traditional and epidemiological studies,from any part of the world.Review articles based primarily on authors'own research on internationally important topics will be accepted.Short communications and letters to the editor are also welcome.Authors are requested to submit a covering letter indicating that their manuscript represents original unpublished material that has not been and will not be published elsewhere(if accepted).This restriction does not apply to results published as abstracts of communications,letters to the editor or as preliminary reports.By submitting a manuscript the authors warrant that they have obtained permission to use any copyrighted or previously published materials.展开更多
GENERAL Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biom...GENERAL Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biomedicine and related sciences.The Journal invites concise reports of original research in all areas of tropical biomedicine and related fields,both experimental and clinical,including modern,traditional and epidemiological studies,from any part of the world.Review articles based primarily on authors'own research on internationally important topics will be accepted.Short communications and letters to the editor are also welcome.Authors are requested to submit a covering letter indicating that their manuscript represents original unpublished material that has not been and will not be published elsewhere(if accepted).This restriction does not apply to results published as abstracts of communications,letters to the editor or as preliminary reports.By submitting a manuscript the authors warrant that they have obtained permission to use any copyrighted or previously published materials.展开更多
In this study,numerical experiments with different initial radius of maximum wind(RMW)are performed to study the effects of tropical cyclone(TC)size combined with land-sea contrast on TC motion and low-level wind stru...In this study,numerical experiments with different initial radius of maximum wind(RMW)are performed to study the effects of tropical cyclone(TC)size combined with land-sea contrast on TC motion and low-level wind structure before landfall.By idealized numerical simulations,we found that larger TC arrived coastline earlier than smaller TC,when they started moving from the same position.This is because that the larger TCs not only accelerate earlier but also have greater movement speed than smaller TCs when they approach the coastline.The mechanism responsible for this is that the edge of large TCs reach coastline earlier,thus their movement speed accelerated earlier than small TCs,due to the asymmetries in diabatic heating and radial flow generated by the land-sea contrast.Moreover,when TCs in three experiments all affected by the land-sea contrast,the stronger asymmetries generated in larger TC,thus resulting in faster movement in larger TC.The stronger inflow in western quadrant and weaker inflow(even outflow)in eastern quadrant of larger TC deduced apparently difference in vertical motion and diabatic heating between western and eastern quadrant of TC before landfall.An analysis of potential vorticity tendency proved that the diabatic heating terms were important and considered in determining the TC landward drift because asymmetries in vertical motion and relative vorticity developed due to asymmetric flow.展开更多
Recent studies identify large uncertainties in the projections of tropical cyclone(TC)activity due to discrepancies in tropical Pacific sea surface temperature(SST)warming patterns.While observational datasets consist...Recent studies identify large uncertainties in the projections of tropical cyclone(TC)activity due to discrepancies in tropical Pacific sea surface temperature(SST)warming patterns.While observational datasets consistently reveal a La Niña-like warming pattern[0.15℃-0.25℃(10 yr)^(−1) relative cooling in the eastern equatorial Pacific],over 80%of CMIP6 models project an erroneous El Niño-like trend.These discrepancies arise from biases in cloud feedbacks,Walker circulation strength,and oceanic upwelling processes.This review examines the key mechanisms shaping observed versus modeled warming patterns,evaluates the complex link between tropical SST patterns and TC activity,and explores the feasibility of storm-resolving models for improving TC projections.We propose that pattern-conditioned TC projections using convection-permitting models,alongside physics-informed interpretations,offer a path forward in reducing uncertainties in future climate predictions.展开更多
Tropical cyclones(TCs)have profound impacts on socioeconomic conditions and pose substantial risks to lives and property.However,it is still unclear whether the multitimescale changes in TC activity over the past 2000...Tropical cyclones(TCs)have profound impacts on socioeconomic conditions and pose substantial risks to lives and property.However,it is still unclear whether the multitimescale changes in TC activity over the past 2000 years in the Northwestern Pacific(NWP)were regulated by Asian dust forcing.Here,we assessed the impact of Asian dust on TC activity using observational data and reconstructed records from the northern and southern NWP.Our correlation analysis of instrumental data from 1954 to 2017 reveals no significant relationship between observed TC activity and Asian dust forcing.Furthermore,we found a meridional dipole pattern of TC variation across the NWP in observations and reconstructions.These finding challenges current explanations that are based on the synchronous changes in TC activity and Asian dust forcing.Alternatively,we propose that the Western Pacific Subtropical High(WPSH)plays a crucial role in driving these meridional dipole patterns in TC variations,as supported by observations and reconstructions.The southwestward extension of an enhanced WPSH intensifies easterly flow,steering TCs westward along its southern edge.This leads to more TC activity in the southern NWP but less in the north,and vice versa when the WPSH is weakened.With the expected strengthening of the WPSH due to global warming,it is vital to consider its impact on NWP TC activity for effective risk-mitigation strategies.展开更多
The present study employs statistical analysis to investigate the relationship between the geopotential height anomalies induced by tropical cyclones(TCs)and the meridional movement of the western Pacific subtropical ...The present study employs statistical analysis to investigate the relationship between the geopotential height anomalies induced by tropical cyclones(TCs)and the meridional movement of the western Pacific subtropical high(WPSH),as well as the mechanisms through which TCs can induce such geopotential height anomalies.Results show that TCs can cause the WPSH to move northward,and the meridional motion of the WPSH ridgeline is related with the geopotential height anomalies,which is better indicated by the relative geopotential height anomalies.In the process of TCs causing the WPSH to move northward,the TCs cause abnormal horizonal warm(cold)advection and abnormal ascending(descending)motion in the region south(north)of 40°N.Since the influence of the abnormal vertical motion is weaker,the abnormal temperature tendency eventually shows a more consistent phase distribution with the abnormal horizonal temperature advection,which is favorable for the temperature to abnormally increase near 40°N.Such an abnormal increase in temperature causes the geopotential height to abnormally increase under the static equilibrium constraint,which further changes the location of the centroid of the WPSH geopotential height,and hence the location of the WPSH ridgeline changes as well.展开更多
Based on morphology and phylogenetic analyses,a new species,Efibula candidissima,is described from Bawangling,National Park of Hainan Tropical Rainforest.The basidiomata are resupinate,waxy,snow white when fresh,white...Based on morphology and phylogenetic analyses,a new species,Efibula candidissima,is described from Bawangling,National Park of Hainan Tropical Rainforest.The basidiomata are resupinate,waxy,snow white when fresh,white to cream and soft corky to fragile when dry,with distinct snow white rhizomorph at margin.Hymenophore surface are smooth,and the clamp connections are absent.Ellipsoid to oblong-ellipsoid basidiospores measure 4.8–5.8×3.3–4μm.This species is distributed in tropical forest in southern China.展开更多
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr...Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling.展开更多
This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,wh...This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations.展开更多
Cloud type profoundly affects precipitation,but few studies have explored its impact on precipitation scale height.The authors calculated the ratio of the volume of each cloud type to the total cloud volume and partit...Cloud type profoundly affects precipitation,but few studies have explored its impact on precipitation scale height.The authors calculated the ratio of the volume of each cloud type to the total cloud volume and partitioned the tropical region based on the dominant cloud types.Based on this,tropical regions were categorized into altocumulus control regions,stratocumulus control regions,deep convective cloud control regions,and transition regions.These regions exhibit unique characteristics:high precipitation scale heights and low surface precipitation rates in altocumulus control regions;low precipitation scale heights and low surface precipitation rates in stratocumulus control regions;and moderate precipitation scale heights with high surface precipitation rates in deep convective cloud regions.These features arise from differences in cloud characteristics,precipitation probability,and intensity,influenced by varying water vapor structures.In terms of physical mechanisms,altocumulus,stratocumulus,and deep convective cloud regions are characterized by total dryness,upper-level dryness with lower-level wetness,and total wetness,respectively.Upper-layer dryness leads to low cloud and precipitation structures,reducing the precipitation scale height,while lower-layer dryness increases it.Different humidity conditions in the upper and lower layers lead to variations in cloud type and volume distribution,ultimately affecting precipitation scale heights.This finding aids the mechanistic study of cloud precipitation physics in the tropics,providing valuable insights for developing numerical models and parameterizations.展开更多
Locations around the equator provide unique habitats for microalgae presumably with exceptional vitality.To develop microalga-derived product systems,we previously created a(sub)tropical microalgal collection.In this ...Locations around the equator provide unique habitats for microalgae presumably with exceptional vitality.To develop microalga-derived product systems,we previously created a(sub)tropical microalgal collection.In this study,two Chlorella strains(MEM176 and MEM193),adaptive to typical tropical climate,were isolated from the collection.The production performance was evaluated where both strains showed a robust growth in high temperatures and light intensities.Specifically,the strains MEM176 and MEM193 produced 503.6-mg/(L·d)and 411.3-mg/(L·d)biomass,respectively,with high contents of proteins.Their commercial and nutritional values were emphasized by amino acid compositions(e.g.,proline,valine,and phenylalanine).Particularly,higher amounts of proline were revealed in MEM176(47.9 mg/g dry biomass(DW))and MEM193(47.9 and 59.2 mg/g DW)than available commercial strains.Compared with MEM193,MEM176 produced 129.7%more lipids in which unsaturated fatty acids(particularly linoleic acid andα-linolenic acid)account for 65%of the total lipids.Therefore,it is promising to explore the potential of these Chlorella strains as food additives via outdoor cultivation in tropical area,notably MEM176 that exhibits superiority as sources of essential amino acids and valuable fatty acids.展开更多
This study employs the self-organizing map method to investigate the upper-tropospheric outflow patterns of tropical cyclones(TCs)over the western North Pacific from 1979 to 2019,using the 200 hPa horizontal wind fiel...This study employs the self-organizing map method to investigate the upper-tropospheric outflow patterns of tropical cyclones(TCs)over the western North Pacific from 1979 to 2019,using the 200 hPa horizontal wind fields from the ERA5 reanalysis datasets.According to the number and orientation of TC outflow channels,as well as the wind speed,the outflow patterns are classified into five categories:southwestward single-channel pattern S1(26.1%);northwestward single-channel pattern S2(23.6%);northeastward single-channel pattern S3(23.6%);double-channel outflow pattern D(20.8%);and high latitude outflow pattern H(6.0%).Composite analysis shows that the orientations of the TC outflow channels are aligned with the direction of the environmental vertical wind shear and closely related to the distribution of the environmental inertial instability,upper-level divergence,and inner-core convective activities.TC intensity and intensity changes for different outflow patterns are also significantly different.Patterns S1 and S2 usually appear in the development phase and are thus prone to TC intensification,while patterns S3 and H usually occur in the weakening phase and are thus prone to TC weakening.The double-channel pattern(D)has the largest mean intensity and accounts for more than 60%of super-typhoon samples.展开更多
The disasters caused by tropical cyclones(TCs),including gale-force winds,heavy rainfall,and storm surges,have profound social and economic impacts,which are closely associated with the track,intensity,and structure o...The disasters caused by tropical cyclones(TCs),including gale-force winds,heavy rainfall,and storm surges,have profound social and economic impacts,which are closely associated with the track,intensity,and structure of TCs.Over the past few decades,significant progress has been made in developing theories and understanding the mechanisms of TC genesis and development,as well as advancing the monitoring and forecasting of TCs.展开更多
Spaceborne microwave instruments possess the capability of day-and-night and all-weather measurements that can penetrate clouds and fog,and directly measure tropical cyclone(TC)ocean surface winds.In this study,we est...Spaceborne microwave instruments possess the capability of day-and-night and all-weather measurements that can penetrate clouds and fog,and directly measure tropical cyclone(TC)ocean surface winds.In this study,we establish an effective methodology to estimate TC dynamic characteristic parameters(DCP),including the storm center location,intensity,radius of maximum wind(RMW)and wind structure,purely from TC ocean winds measured by multi-platform spaceborne microwave instruments.Combining measurements from active and passive sensors can provide long time series data for monitoring changes in storm DCP.Here,the evolution of the DCP for TC Freddy(2023),from its genesis to its landfall,is evaluated using data from synthetic aperture radars(SARs),as well as radiometer(RAD)and scatterometer(SCA)observations.Comparing the results to the best-track datasets for the longitudes and latitudes of the storm centers,we show that the root-mean-square errors(RMSEs)are 0.22°and 0.31°,respectively,both with a correlation of 0.99.For the detected intensity,the RMSEs are 6.8 m s^(−1) for SARs and 7.3 m s^(−1) for RADs.However,TC intensities measured by C-band SCAs are significantly underestimated,especially for wind speeds less than 50 m s^(−1).In terms of RMW and wind radii,the SARs,RADs and SCAs demonstrate good accuracy and applicability.Our investigation emphasizes the crucial role played by spaceborne microwave instruments in the study of TCs.This is helpful in monitoring,and in the future,will help improve the forecasting of TC intensities and their characteristic structures.展开更多
GENERAL.Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biom...GENERAL.Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biomedicine and related sciences.The Journal invites concise reports of original research in all areas of tropical biomedicine and related fields,both experimental and clinical,including modern,traditional and epidemiological studies,from any part of the world.展开更多
Microplastics are a widely distributed pollutant that threatens the growth and health of marine organisms.Compared to the mainland,island ecosystems with unique characteristics are fragile and sensitive to natural and...Microplastics are a widely distributed pollutant that threatens the growth and health of marine organisms.Compared to the mainland,island ecosystems with unique characteristics are fragile and sensitive to natural and human interference.We investigated the characteristics and ecological risks of microplastics in the soils of Wuzhizhou Island,Hainan,China,and its surrounding nearshore sediments affected by human activities.Results show that the microplastic abundance in soil was 1116.67 items/kg;the particles were fragmented in size of less than 2 mm,the main polymer types were polypropylene(PP),polyethylene(PE),and polybutylene(PB),in transparent,gray,green,or white.The microplastic abundances in nearshore sediments of Wuzhizhou Island and the surrounding Haitang Bay were 274.67 and 755.17 items/kg,respectively;the particles were mainly fibrous,less than 1 mm in size,the main polymer types were rayon and polyethylene terephthalate(PET),mostly transparent.The abundance of microplastics showed a decreasing trend from shore to sea.Microplastics in the supratidal and intertidal zones differed in mainly the abundance and size.The microplastics in land soil were from tourism activities and infrastructure while the those in nearshore sediments came from not only tourism but also domestic sewage and fishing activities.The ecological risk of microplastics in the terrestrial soils of Wuzhizhou Island was higher than that in its surrounding nearshore sediments.These findings help to gain a deeper understanding of microplastic pollution in the island subjected to intensive human activities,and provide a scientific basis for subsequent in-situ toxicology research on microplastics and plastic pollution control.展开更多
The dynamic processes responsible for the movement of tropical cyclone Khanun(2017)were studied by analyzing data from the mesoscale WRF model simulation.The simulated motion was induced by the ventilation flow of bot...The dynamic processes responsible for the movement of tropical cyclone Khanun(2017)were studied by analyzing data from the mesoscale WRF model simulation.The simulated motion was induced by the ventilation flow of both the environmentaland asymmetric rotational wind averaged over an area within a radius of 200 km from Khanun's center.The results revealed that during Khanun's intensification period,environmental wind barely changed,whereas the speed and direction of asymmetric rotational wind exhibited significant changes as Khanun's southwestward movement switched to a northwestward movement.The streamfunction analysis revealed that the change in the direction of movement was consistent with the ventilation flow of asymmetric rotational wind across Khanun's center associated with the asymmetric circulation rotation.The cyclonic circulation center rotated counterclockwise,moving from the northeast to the north before and during the rapid intensification period,and exhibited wandering behavior during this period.The rotational rate of asymmetric circulation was quantitatively estimated using the formulation based on the budget of asymmetric rotational kinetic energy.This calculation revealed that the rapid counterclockwise rotation resulted from the conversion of environmental to asymmetric rotational kinetic energy and was related to the horizontal advection of environmental tangential flow.The rotation of the asymmetric circulation displayed a wandering behavior when the dissipation term became significant.The dissipation term plus the conversion from symmetric to asymmetric rotational kinetic energy associated with the advection of symmetric tangential wind by the environmental radial wind led to a slow clockwise rotation of the asymmetric cyclonic center to the north.展开更多
Tropical cyclone-induced heavy precipitation(TCP)can have a detrimental impact on human productivity,causing significant economic losses and even human casualties in coastal countries every year.In this review article...Tropical cyclone-induced heavy precipitation(TCP)can have a detrimental impact on human productivity,causing significant economic losses and even human casualties in coastal countries every year.In this review article,the authors highlight the latest research developments in terms of ocean-atmosphere interactions and TCP,and identify the gaps where further research is required to enhance our understanding.The paper revolves around the following topics:(1)the characteristics of TCP over the ocean;(2)how air-sea interface processes,including sea surface temperature,sea-salt aerosols,and sea spray,influence TCP development;(3)the effects of TCP on the ocean;and(4)TCP changes in the context of global warming.In addition,directions and suggestions for future research toward a more comprehensive understanding of TCP-ocean interactions are discussed.Overall,this review summarizes the recent research progress and challenges in TCP-ocean interactions,and could serve as a guide for improvements in convective parameterization schemes and climate models toward predicting TCP distribution and intensity more accurately.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3000803)the National Natural Science Foundation of China(Grant Nos.42375149,41975133 and 42205070)the Shanghai Pujiang Program(Grant No.22PJ1415900)。
文摘A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-scale(SGS)turbulent fluxes associated with convective clouds in idealized tropical cyclone(TC)simulations.To evaluate the capability of the modified scheme in simulating real TCs,two sets of simulations of TC Soudelor(2015),one with the modified scheme and the other with the original scheme,are conducted.Comparisons with observations and coarse-grained results from large eddy simulation benchmarks demonstrate that the modified scheme improves the forecasting of the intensity and structure,as well as the SGS turbulent fluxes of Soudelor.Using the modified turbulence scheme,a TC with stronger intensity,smaller size,a shallower but stronger inflow layer,and a more intense but less inclined convective updraft is simulated.The rapid intensification process and secondary eyewall features can also be captured better by the modified scheme.By analyzing the mechanism by which turbulent transport impacts the intensity and structure of TCs,it is shown that accurately representing the turbulent transport associated with convective clouds above the planetary boundary layer helps to initiate the TC spin-up process.
文摘GENERAL Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biomedicine and related sciences.The Journal invites concise reports of original research in all areas of tropical biomedicine and related fields,both experimental and clinical,including modern,traditional and epidemiological studies,from any part of the world.Review articles based primarily on authors'own research on internationally important topics will be accepted.Short communications and letters to the editor are also welcome.Authors are requested to submit a covering letter indicating that their manuscript represents original unpublished material that has not been and will not be published elsewhere(if accepted).This restriction does not apply to results published as abstracts of communications,letters to the editor or as preliminary reports.By submitting a manuscript the authors warrant that they have obtained permission to use any copyrighted or previously published materials.
文摘Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biomedicine and related sciences.The Journal invites concise reports of original research in all areas of tropical biomedicine and related fields,both experimental and clinical,including modern,traditional and epidemiological studies,from any part of the world.Review articles based primarily on authors'own research on internationally important topics will be accepted.Short communications and letters to the editor are also welcome.Authors are requested to submit a covering letter indicating that their manuscript represents original unpublished material that has not been and will not be published elsewhere(if accepted).This restriction does not apply to results published as abstracts of communications,letters to the editor or as preliminary reports.By submitting a manuscript the authors warrant that they have obtained permission to use any copyrighted or previously published materials.
文摘GENERAL Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biomedicine and related sciences.The Journal invites concise reports of original research in all areas of tropical biomedicine and related fields,both experimental and clinical,including modern,traditional and epidemiological studies,from any part of the world.Review articles based primarily on authors'own research on internationally important topics will be accepted.Short communications and letters to the editor are also welcome.Authors are requested to submit a covering letter indicating that their manuscript represents original unpublished material that has not been and will not be published elsewhere(if accepted).This restriction does not apply to results published as abstracts of communications,letters to the editor or as preliminary reports.By submitting a manuscript the authors warrant that they have obtained permission to use any copyrighted or previously published materials.
基金The National Natural Science Foundation of China under contract Nos 42175011,42192554,and 42305007.
文摘In this study,numerical experiments with different initial radius of maximum wind(RMW)are performed to study the effects of tropical cyclone(TC)size combined with land-sea contrast on TC motion and low-level wind structure before landfall.By idealized numerical simulations,we found that larger TC arrived coastline earlier than smaller TC,when they started moving from the same position.This is because that the larger TCs not only accelerate earlier but also have greater movement speed than smaller TCs when they approach the coastline.The mechanism responsible for this is that the edge of large TCs reach coastline earlier,thus their movement speed accelerated earlier than small TCs,due to the asymmetries in diabatic heating and radial flow generated by the land-sea contrast.Moreover,when TCs in three experiments all affected by the land-sea contrast,the stronger asymmetries generated in larger TC,thus resulting in faster movement in larger TC.The stronger inflow in western quadrant and weaker inflow(even outflow)in eastern quadrant of larger TC deduced apparently difference in vertical motion and diabatic heating between western and eastern quadrant of TC before landfall.An analysis of potential vorticity tendency proved that the diabatic heating terms were important and considered in determining the TC landward drift because asymmetries in vertical motion and relative vorticity developed due to asymmetric flow.
基金supported partly by the AORI visiting professorship programsupported in part by a Moonshot R&D grant(Grant No.JPMJMS2282-02)from the Japan Science and Technology Agency+1 种基金the JSPS Core-to-Core Program,“International Core-to-Core Project on Global Storm Resolving Analysis”(Grant No.JPJSCCA20220001)JSPS KAKENHI(Grant Nos.20B202,20H05728,and 24K00703)。
文摘Recent studies identify large uncertainties in the projections of tropical cyclone(TC)activity due to discrepancies in tropical Pacific sea surface temperature(SST)warming patterns.While observational datasets consistently reveal a La Niña-like warming pattern[0.15℃-0.25℃(10 yr)^(−1) relative cooling in the eastern equatorial Pacific],over 80%of CMIP6 models project an erroneous El Niño-like trend.These discrepancies arise from biases in cloud feedbacks,Walker circulation strength,and oceanic upwelling processes.This review examines the key mechanisms shaping observed versus modeled warming patterns,evaluates the complex link between tropical SST patterns and TC activity,and explores the feasibility of storm-resolving models for improving TC projections.We propose that pattern-conditioned TC projections using convection-permitting models,alongside physics-informed interpretations,offer a path forward in reducing uncertainties in future climate predictions.
基金National Natural Science Foundation of China,No.42225105,No.42201176National Natural Science Foundation of China Basic Science Center for Tibetan Plateau Earth System Project(NSFC BSCTPES Project),No.41988101。
文摘Tropical cyclones(TCs)have profound impacts on socioeconomic conditions and pose substantial risks to lives and property.However,it is still unclear whether the multitimescale changes in TC activity over the past 2000 years in the Northwestern Pacific(NWP)were regulated by Asian dust forcing.Here,we assessed the impact of Asian dust on TC activity using observational data and reconstructed records from the northern and southern NWP.Our correlation analysis of instrumental data from 1954 to 2017 reveals no significant relationship between observed TC activity and Asian dust forcing.Furthermore,we found a meridional dipole pattern of TC variation across the NWP in observations and reconstructions.These finding challenges current explanations that are based on the synchronous changes in TC activity and Asian dust forcing.Alternatively,we propose that the Western Pacific Subtropical High(WPSH)plays a crucial role in driving these meridional dipole patterns in TC variations,as supported by observations and reconstructions.The southwestward extension of an enhanced WPSH intensifies easterly flow,steering TCs westward along its southern edge.This leads to more TC activity in the southern NWP but less in the north,and vice versa when the WPSH is weakened.With the expected strengthening of the WPSH due to global warming,it is vital to consider its impact on NWP TC activity for effective risk-mitigation strategies.
基金sponsored by the National Natural Science Foundation of China[grant number 42305011]。
文摘The present study employs statistical analysis to investigate the relationship between the geopotential height anomalies induced by tropical cyclones(TCs)and the meridional movement of the western Pacific subtropical high(WPSH),as well as the mechanisms through which TCs can induce such geopotential height anomalies.Results show that TCs can cause the WPSH to move northward,and the meridional motion of the WPSH ridgeline is related with the geopotential height anomalies,which is better indicated by the relative geopotential height anomalies.In the process of TCs causing the WPSH to move northward,the TCs cause abnormal horizonal warm(cold)advection and abnormal ascending(descending)motion in the region south(north)of 40°N.Since the influence of the abnormal vertical motion is weaker,the abnormal temperature tendency eventually shows a more consistent phase distribution with the abnormal horizonal temperature advection,which is favorable for the temperature to abnormally increase near 40°N.Such an abnormal increase in temperature causes the geopotential height to abnormally increase under the static equilibrium constraint,which further changes the location of the centroid of the WPSH geopotential height,and hence the location of the WPSH ridgeline changes as well.
基金supported by the Hainan Institute of National Park(KY-24ZK02)the Key Research and Development Program Project of Hainan Province,China(ZDYF2023RDYL01)+1 种基金the Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation(GZC20230254)the National Natural Science Foundation of China(32270011).
文摘Based on morphology and phylogenetic analyses,a new species,Efibula candidissima,is described from Bawangling,National Park of Hainan Tropical Rainforest.The basidiomata are resupinate,waxy,snow white when fresh,white to cream and soft corky to fragile when dry,with distinct snow white rhizomorph at margin.Hymenophore surface are smooth,and the clamp connections are absent.Ellipsoid to oblong-ellipsoid basidiospores measure 4.8–5.8×3.3–4μm.This species is distributed in tropical forest in southern China.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.42075138 and 42375147)the Program on Key Basic Research Project of Jiangsu(Grant No.BE2023829)。
文摘Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling.
基金supported by the National Natural Science Foundation of China(Grant Nos.42475016,42192555 and 42305085)the China Postdoctoral Science Foundation(Grant No.2023M741615)the 2023 Graduate Research Innovation Project of Hunan Province(Grant No.CX20230011)。
文摘This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations.
基金supported by the National Natural Science Foundation of China[grant numbers 42175099 and 42027804]The appointment of Chunsong Lu at Nanjing University of Information Science&Technology was partially supported by the Jiangsu Specially-Appointed Professor[grant number R2024T01].
文摘Cloud type profoundly affects precipitation,but few studies have explored its impact on precipitation scale height.The authors calculated the ratio of the volume of each cloud type to the total cloud volume and partitioned the tropical region based on the dominant cloud types.Based on this,tropical regions were categorized into altocumulus control regions,stratocumulus control regions,deep convective cloud control regions,and transition regions.These regions exhibit unique characteristics:high precipitation scale heights and low surface precipitation rates in altocumulus control regions;low precipitation scale heights and low surface precipitation rates in stratocumulus control regions;and moderate precipitation scale heights with high surface precipitation rates in deep convective cloud regions.These features arise from differences in cloud characteristics,precipitation probability,and intensity,influenced by varying water vapor structures.In terms of physical mechanisms,altocumulus,stratocumulus,and deep convective cloud regions are characterized by total dryness,upper-level dryness with lower-level wetness,and total wetness,respectively.Upper-layer dryness leads to low cloud and precipitation structures,reducing the precipitation scale height,while lower-layer dryness increases it.Different humidity conditions in the upper and lower layers lead to variations in cloud type and volume distribution,ultimately affecting precipitation scale heights.This finding aids the mechanistic study of cloud precipitation physics in the tropics,providing valuable insights for developing numerical models and parameterizations.
基金Supported by the National Key R&D Program of China(Nos.2021YFA0909600,2021YFE0110100)the National Natural Science Foundation of China(Nos.32060061,32370380)+3 种基金the Key R&D Program of Hainan Province(Nos.ZDYF2024XDNY244,ZDYF2022XDNY140)the Natural Science Foundation of Hainan Province(No.322QN250)the Foreign Expert Foundation of Hainan Province(No.G20230607016E)the Program of Key Lab of Ministry of Education for Utilization and Conservation of Tropical Marine Bioresources(No.2023SCNFKF04)。
文摘Locations around the equator provide unique habitats for microalgae presumably with exceptional vitality.To develop microalga-derived product systems,we previously created a(sub)tropical microalgal collection.In this study,two Chlorella strains(MEM176 and MEM193),adaptive to typical tropical climate,were isolated from the collection.The production performance was evaluated where both strains showed a robust growth in high temperatures and light intensities.Specifically,the strains MEM176 and MEM193 produced 503.6-mg/(L·d)and 411.3-mg/(L·d)biomass,respectively,with high contents of proteins.Their commercial and nutritional values were emphasized by amino acid compositions(e.g.,proline,valine,and phenylalanine).Particularly,higher amounts of proline were revealed in MEM176(47.9 mg/g dry biomass(DW))and MEM193(47.9 and 59.2 mg/g DW)than available commercial strains.Compared with MEM193,MEM176 produced 129.7%more lipids in which unsaturated fatty acids(particularly linoleic acid andα-linolenic acid)account for 65%of the total lipids.Therefore,it is promising to explore the potential of these Chlorella strains as food additives via outdoor cultivation in tropical area,notably MEM176 that exhibits superiority as sources of essential amino acids and valuable fatty acids.
基金supported by the National Natural Science Foundation of China[grant numbers 42192553 and 61827091]。
文摘This study employs the self-organizing map method to investigate the upper-tropospheric outflow patterns of tropical cyclones(TCs)over the western North Pacific from 1979 to 2019,using the 200 hPa horizontal wind fields from the ERA5 reanalysis datasets.According to the number and orientation of TC outflow channels,as well as the wind speed,the outflow patterns are classified into five categories:southwestward single-channel pattern S1(26.1%);northwestward single-channel pattern S2(23.6%);northeastward single-channel pattern S3(23.6%);double-channel outflow pattern D(20.8%);and high latitude outflow pattern H(6.0%).Composite analysis shows that the orientations of the TC outflow channels are aligned with the direction of the environmental vertical wind shear and closely related to the distribution of the environmental inertial instability,upper-level divergence,and inner-core convective activities.TC intensity and intensity changes for different outflow patterns are also significantly different.Patterns S1 and S2 usually appear in the development phase and are thus prone to TC intensification,while patterns S3 and H usually occur in the weakening phase and are thus prone to TC weakening.The double-channel pattern(D)has the largest mean intensity and accounts for more than 60%of super-typhoon samples.
文摘The disasters caused by tropical cyclones(TCs),including gale-force winds,heavy rainfall,and storm surges,have profound social and economic impacts,which are closely associated with the track,intensity,and structure of TCs.Over the past few decades,significant progress has been made in developing theories and understanding the mechanisms of TC genesis and development,as well as advancing the monitoring and forecasting of TCs.
基金supported by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LZJMZ25D050008 and LQ21D060001)the National Natural Science Foundation of China (Grant No. 42305153)+4 种基金the East China Meteorological Science and Technology Collaborative Innovation Foundation Cooperation Project (Grant No. QYHZ202307)the Zhejiang Meteorological Science and Technology Plan Project (Grant Nos. 2021YB07, 2022ZD06 and 2023YB06)the Youth Innovation Team Fund of the China Meteorological Administration (Grant No.CMA2023QN12)support of the Canadian program “Transforming Climate Action” led by Dalhousie University in Canadathe Canadian Space Agency (CSA) projects “Ocean surface features related to aggregation of North Atlantic Right Whales (NARWs)” and “Fine resolution classification of sea ice from the RADARSAT Constellation Mission (RCM)”
文摘Spaceborne microwave instruments possess the capability of day-and-night and all-weather measurements that can penetrate clouds and fog,and directly measure tropical cyclone(TC)ocean surface winds.In this study,we establish an effective methodology to estimate TC dynamic characteristic parameters(DCP),including the storm center location,intensity,radius of maximum wind(RMW)and wind structure,purely from TC ocean winds measured by multi-platform spaceborne microwave instruments.Combining measurements from active and passive sensors can provide long time series data for monitoring changes in storm DCP.Here,the evolution of the DCP for TC Freddy(2023),from its genesis to its landfall,is evaluated using data from synthetic aperture radars(SARs),as well as radiometer(RAD)and scatterometer(SCA)observations.Comparing the results to the best-track datasets for the longitudes and latitudes of the storm centers,we show that the root-mean-square errors(RMSEs)are 0.22°and 0.31°,respectively,both with a correlation of 0.99.For the detected intensity,the RMSEs are 6.8 m s^(−1) for SARs and 7.3 m s^(−1) for RADs.However,TC intensities measured by C-band SCAs are significantly underestimated,especially for wind speeds less than 50 m s^(−1).In terms of RMW and wind radii,the SARs,RADs and SCAs demonstrate good accuracy and applicability.Our investigation emphasizes the crucial role played by spaceborne microwave instruments in the study of TCs.This is helpful in monitoring,and in the future,will help improve the forecasting of TC intensities and their characteristic structures.
文摘GENERAL.Asian Pacific Journal of Tropical Biomedicine is sponsored by Hainan Medical University Journal Publisher,and aims to set up an acdemic communicating platform for scientists all over the world on tropical biomedicine and related sciences.The Journal invites concise reports of original research in all areas of tropical biomedicine and related fields,both experimental and clinical,including modern,traditional and epidemiological studies,from any part of the world.
基金the Hainan Provincial Natural Science Foundation of China(No.422MS082)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.2021CXLH0009)+2 种基金the Funding Scheme for High-level Overseas Chinese Students’Return of Ministry of Human Resources and Social Security of China and ScienceOpen Project Program of Yazhou Bay Innovation Institute of Hainan Tropical Ocean University(No.2022RHDKFKT08)Technology Project of Yazhou Bay Innovation Institute of Hainan Tropical Ocean University(No.2022CXYZD002)。
文摘Microplastics are a widely distributed pollutant that threatens the growth and health of marine organisms.Compared to the mainland,island ecosystems with unique characteristics are fragile and sensitive to natural and human interference.We investigated the characteristics and ecological risks of microplastics in the soils of Wuzhizhou Island,Hainan,China,and its surrounding nearshore sediments affected by human activities.Results show that the microplastic abundance in soil was 1116.67 items/kg;the particles were fragmented in size of less than 2 mm,the main polymer types were polypropylene(PP),polyethylene(PE),and polybutylene(PB),in transparent,gray,green,or white.The microplastic abundances in nearshore sediments of Wuzhizhou Island and the surrounding Haitang Bay were 274.67 and 755.17 items/kg,respectively;the particles were mainly fibrous,less than 1 mm in size,the main polymer types were rayon and polyethylene terephthalate(PET),mostly transparent.The abundance of microplastics showed a decreasing trend from shore to sea.Microplastics in the supratidal and intertidal zones differed in mainly the abundance and size.The microplastics in land soil were from tourism activities and infrastructure while the those in nearshore sediments came from not only tourism but also domestic sewage and fishing activities.The ecological risk of microplastics in the terrestrial soils of Wuzhizhou Island was higher than that in its surrounding nearshore sediments.These findings help to gain a deeper understanding of microplastic pollution in the island subjected to intensive human activities,and provide a scientific basis for subsequent in-situ toxicology research on microplastics and plastic pollution control.
基金supported by the National Natural Science Foundation of China(Grant No.41930967)。
文摘The dynamic processes responsible for the movement of tropical cyclone Khanun(2017)were studied by analyzing data from the mesoscale WRF model simulation.The simulated motion was induced by the ventilation flow of both the environmentaland asymmetric rotational wind averaged over an area within a radius of 200 km from Khanun's center.The results revealed that during Khanun's intensification period,environmental wind barely changed,whereas the speed and direction of asymmetric rotational wind exhibited significant changes as Khanun's southwestward movement switched to a northwestward movement.The streamfunction analysis revealed that the change in the direction of movement was consistent with the ventilation flow of asymmetric rotational wind across Khanun's center associated with the asymmetric circulation rotation.The cyclonic circulation center rotated counterclockwise,moving from the northeast to the north before and during the rapid intensification period,and exhibited wandering behavior during this period.The rotational rate of asymmetric circulation was quantitatively estimated using the formulation based on the budget of asymmetric rotational kinetic energy.This calculation revealed that the rapid counterclockwise rotation resulted from the conversion of environmental to asymmetric rotational kinetic energy and was related to the horizontal advection of environmental tangential flow.The rotation of the asymmetric circulation displayed a wandering behavior when the dissipation term became significant.The dissipation term plus the conversion from symmetric to asymmetric rotational kinetic energy associated with the advection of symmetric tangential wind by the environmental radial wind led to a slow clockwise rotation of the asymmetric cyclonic center to the north.
基金supported by the National Natural Science Foundation of China [grant numbers 42192552 and 42475011]。
文摘Tropical cyclone-induced heavy precipitation(TCP)can have a detrimental impact on human productivity,causing significant economic losses and even human casualties in coastal countries every year.In this review article,the authors highlight the latest research developments in terms of ocean-atmosphere interactions and TCP,and identify the gaps where further research is required to enhance our understanding.The paper revolves around the following topics:(1)the characteristics of TCP over the ocean;(2)how air-sea interface processes,including sea surface temperature,sea-salt aerosols,and sea spray,influence TCP development;(3)the effects of TCP on the ocean;and(4)TCP changes in the context of global warming.In addition,directions and suggestions for future research toward a more comprehensive understanding of TCP-ocean interactions are discussed.Overall,this review summarizes the recent research progress and challenges in TCP-ocean interactions,and could serve as a guide for improvements in convective parameterization schemes and climate models toward predicting TCP distribution and intensity more accurately.