期刊文献+
共找到430篇文章
< 1 2 22 >
每页显示 20 50 100
A constitutive model coupling damage and material anisotropy for wide stress triaxiality 被引量:7
1
作者 Rui LI Mei ZHAN +4 位作者 Zebang ZHENG Hongrui ZHANG Xiaolei CUI Wei LV Yudong LEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3509-3525,共17页
A constitutive model that can describe the damage evolution of anisotropic metal sheets during the complex forming processes which experience wide stress triaxiality history is essential to accurately predict the defo... A constitutive model that can describe the damage evolution of anisotropic metal sheets during the complex forming processes which experience wide stress triaxiality history is essential to accurately predict the deformation and rupture behaviors of the processes.In this study,a modified Lemaitre damage criterion which couples with the anisotropic Barlat 89 yield function is established.The effects of stress triaxiality,Lode parameter and shear stress on damage accumulation are considered in the constitutive model.The model is numerically implemented and applied to fracture prediction in tensile tests with different stress triaxialities and a complex deformation process with wide stress triaxiality history.The good consistency of predictions and experiments indicates that the modified Lemaitre damage model has excellent fracture prediction ability.Finally,the accuracy of the model is analyzed and discussed. 展开更多
关键词 Constitutive model Damage evolution Fracture criterion Material anisotropy Stress triaxiality
原文传递
Simulation of ductile fracture initiation in steels using a stress triaxiality-shear stress coupled model 被引量:2
2
作者 Yazhi Zhu Michael D.Engelhardt Zuanfeng Pan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期600-614,共15页
Micromechanics-based models provide powerful tools to predict initiation of ductile fracture in steels. A new criterion is presented herein to study the process of ductile fracture when the effects of both stress tria... Micromechanics-based models provide powerful tools to predict initiation of ductile fracture in steels. A new criterion is presented herein to study the process of ductile fracture when the effects of both stress triaxiality and shear stress on void growth and coalescence are considered. Finite-element analyses of two different kinds of steel, viz. ASTM A992 and AISI 1045, were carried out to monitor the history of stress and strain states and study the methodology for determining fracture initiation. Both the new model and void growth model (VGM) were calibrated for both kinds of steel and their accuracy for predicting fracture initiation evaluated. The results indicated that both models offer good accuracy for predicting fracture of A992 steel. However, use of the VGM leads to a significant deviation for 1045 steel, while the new model presents good performance for predicting fracture over a wide range of stress triaxiality while capturing the effect of shear stress on fracture initiation. 展开更多
关键词 DUCTILE fracture VOID growth STRESS triaxiality Shear STRESS ratio ASTM A992 STEEL AISI 1045 STEEL
在线阅读 下载PDF
Mechanical Behavior and Microstructure Evolution of a Rolled Magnesium Alloy AZ31B Under Low Stress Triaxiality 被引量:3
3
作者 Hongchen Pan Fenghua Wang +2 位作者 Li Jin Miaolin Feng Jie Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1282-1288,共7页
Plastic deformation up to final rupture failure of a rolled magnesium(Mg) alloy Mg-3.0Al-1.0Zn-0.34Mn(AZ31B) under low stress triaxiality was investigated.Local strain evolution was quantified by the digital image... Plastic deformation up to final rupture failure of a rolled magnesium(Mg) alloy Mg-3.0Al-1.0Zn-0.34Mn(AZ31B) under low stress triaxiality was investigated.Local strain evolution was quantified by the digital image correlation(DIC) technique analysis with tensile,combined tensile-shear,and shear specimens,corresponding to the stress triaxiality of 1/3,1/6 and 0,respectively.Stress-strain curves show that the yield stress reduces with the decrease in the stress triaxiality,and obviously exhibits different strain hardening response.Electron backscatter diffraction(EBSD) observations reveal that the twinning behavior depends on stress triaxiality.Before fracture,double twinning is the dominant mechanism at the stress triaxiality of 1/3,while extension twinning is prevalent at the stress triaxiality of 0.Moreover,scanning electron microscopy(SEM) shows that the fracture mechanism is transformed from microvoid growth and coalescence to internal void shearing as the stress triaxiality decreases from 1/3 to 0. 展开更多
关键词 Magnesium alloy Stress triaxiality Twinning
原文传递
The Influence of Triaxiality Parameter γ on the Chiral Doublet Bands with (πg_(9/2))~(-1)(νh_(11/2))~2 Configuration
4
作者 亓斌 王守宇 +4 位作者 赵兴言 祝笑颖 孙大鹏 刘晨 徐长江 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第7期595-597,共3页
The chiral doublet bands with three-quasiparticle configuration (πg9/2)-1 (vh11/2)2 are studied by the fully quantal triaxial particle rotor model. The energy spectra and B(M1)/B(E2) ratios of the doublet ban... The chiral doublet bands with three-quasiparticle configuration (πg9/2)-1 (vh11/2)2 are studied by the fully quantal triaxial particle rotor model. The energy spectra and B(M1)/B(E2) ratios of the doublet bands with different triaxiality parameter γ are systematically analyzed. It is found that γ is a sensitive parameter for the properties of these doublet bands. 展开更多
关键词 chiral doublet bands triaxiality parameter three-quasiparticle configuration
在线阅读 下载PDF
Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei: systematic investigation of the triaxiality effect on the fission barrier 被引量:2
5
作者 柴清祯 赵维娟 +1 位作者 柳敏良 王华磊 《Chinese Physics C》 SCIE CAS CSCD 2018年第5期52-62,共11页
Static fission barriers for 95 even-even transuranium nuclei with charge number Z = 94-118 have been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the potent... Static fission barriers for 95 even-even transuranium nuclei with charge number Z = 94-118 have been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the potential energy surface approach in multidimensional(β;, γ, β;) deformation space. Taking the heavier (252);f nucleus(with the available fission barrier from experiment) as an example, the formation of the fission barrier and the influence of macroscopic, shell and pairing correction energies on it are analyzed. The results of the present calculated β;values and barrier heights are compared with previous calculations and available experiments. The role of triaxiality in the region of the first saddle is discussed. It is found that the second fission barrier is also considerably affected by the triaxial deformation degree of freedom in some nuclei(e.g., the Z =112-118 isotopes). Based on the potential energy curves, general trends of the evolution of the fission barrier heights and widths as a function of the nucleon numbers are investigated. In addition, the effects of Woods-Saxon potential parameter modifications(e.g.,the strength of the spin-orbit coupling and the nuclear surface diffuseness) on the fission barrier are briefly discussed. 展开更多
关键词 static fission barriers potential energy surface approach triaxiality Woods-Saxon potential
原文传递
Spin-dependent γ softness or triaxiality in even-even^(132-138) Nd nuclei
6
作者 柴清祯 王华磊 +1 位作者 杨琼 柳敏良 《Chinese Physics C》 SCIE CAS CSCD 2015年第2期28-33,共6页
The properties of γ instability in rapidly rotating even-even132-138 Nd isotopes have been investigated using the pairing-deformation self-consistent total-Routhian-surface calculations in a deformation space of(β... The properties of γ instability in rapidly rotating even-even132-138 Nd isotopes have been investigated using the pairing-deformation self-consistent total-Routhian-surface calculations in a deformation space of(β2, γ,β4). It is found that even-even134-138 Nd nuclei exhibit triaxiality in both ground and excited states, even up to high-spin states. The lightest isotope possesses a well-deformed prolate shape without a γ deformation component.The current numerical results are compared with previous calculations and available observables such as quadrupole deformation β2 and the feature of γ-band levels, showing basically a general agreement with the observed trend ofγ correlations(e.g. the pattern of the odd-even energy staggering of the γ band). The existing differences between theory and experiment are analyzed and discussed briefly. 展开更多
关键词 even-even nucleus total-Routhian-surface calculation γ softness triaxial deformation
原文传递
Triaxiality and shape coexistence in the A ~ 30 “island of inversion”nuclei
7
作者 DONG GuoXiang WANG XiaoBao YU ShaoYing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第11期99-106,共8页
Understanding the properties of nuclei inside "island of inversion" is still an interesting issue. Based on a simple Nilsson model with a new set of isospin-dependent parameters, and with non-axial deformati... Understanding the properties of nuclei inside "island of inversion" is still an interesting issue. Based on a simple Nilsson model with a new set of isospin-dependent parameters, and with non-axial deformations considered, we have performed three-dimensional potential-energy-surface calculations for Ne, Na, Mg and Al isotopes that are claimed to be in or nearby the A~30 island of inversion". It is found that shape coexistence and triaxial deformation(or softness) exist in these nuclei. Large deformations are obtained by the improved Nilsson parameters, which explains the observed large electric quadrupole transition probabilities. The large deformations happening in30 Ne,31Na,32 Mg and33Al indicate the quenching of the spherical N = 20 neutron shell gap. The calculations of nuclear binding and two-neutron separation energies have been also improved with the isospin-dependent parameters and the inclusion of the non-axial deformation degree of freedom. 展开更多
关键词 island of inversion shell evolution triaxial deformation shape coexistence
原文传递
Research on edge defects suppression of Mg/Al composite plate rolling:Development of embedded rolling technology
8
作者 Chenchen Zhao Zhiquan Huang +3 位作者 Haoran Zhang Peng Li Tao Wang Qingxue Huang 《Journal of Magnesium and Alloys》 2025年第8期3751-3767,共17页
Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre... Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates. 展开更多
关键词 Numerical simulation Damage model Stress triaxiality Mg/Al composite plate Embedded composite rolling
在线阅读 下载PDF
Investigation on coal damage and fracture extension law of liquid nitrogen injection pre-cooling and fracturing under true triaxial stress 被引量:1
9
作者 Botao Li Haifei Lin +7 位作者 Jianping Wei Hongtu Zhang Shugang Li Zongyong Wei Lei Qin Pei Wang Rongwei Luo Zeran Liu 《International Journal of Mining Science and Technology》 2025年第2期213-229,共17页
To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturin... To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification. 展开更多
关键词 Liquid nitrogen fracturing Thermal–hydraulic-mechanical-damage coupling Heterogeneous coal True triaxial stress Fracture morphology
在线阅读 下载PDF
Real-time monitoring of rock fracture by true triaxial test using fiberoptic strain monitoring in adjacent wells 被引量:1
10
作者 Yuanhang Zhang Tiankui Guo +5 位作者 Ming Chen Zhanqing Qu Zunpeng Hu Bo Zhang Linrui Xue Yunpeng Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3762-3772,共11页
The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of ke... The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of key fracture parameters,such as the fracture height and width,are particularly important to ensure efficient oilfield development and precise fracture diagnosis.This study utilized the optical frequency domain reflectometer(OFDR)technique in physical simulation experiments to monitor fractures during indoor true triaxial hydraulic fracturing experiments.The results indicate that the distributed fiber optic strain monitoring technology can efficiently capture the initiation and expansion of fractures.In horizontal well monitoring,the fiber strain waterfall plot can be used to interpret the fracture width,initiation location,and expansion speed.The fiber response can be divided into three stages:strain contraction convergence,strain band formation,and postshutdown strain rate reversal.When the fracture does not contact the fiber,a dual peak strain phenomenon occurs in the fiber and gradually converges as the fracture approaches.During vertical well monitoring in adjacent wells,within the effective monitoring range of the fiber,the axial strain produced by the fiber can represent the fracture height with an accuracy of 95.6%relative to the actual fracture height.This study provides a new perspective on real-time fracture monitoring.The response patterns of fiber-induced strain due to fractures can help us better understand and assess the dynamic fracture behavior,offering significant value for the optimization of oilfield development and fracture diagnostic techniques. 展开更多
关键词 Fracture diagnostics Fiber-optic strain Fracture propagation True triaxial fracturing Optical frequency domain reflectometer (OFDR)demodulation
在线阅读 下载PDF
Impact fracturing of rock-like material using carbon dioxide under different temperatures and pressures 被引量:1
11
作者 Shaobin Hu Zhengyong Yan +2 位作者 Chun Zhu Manchao He Shuogang Pang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期370-384,共15页
Unconventional resources (oil, gas, and geothermal) are often buried deep underground within dense rock strata and complex geological structures, making it increasingly difficult to create volumetric fractures through... Unconventional resources (oil, gas, and geothermal) are often buried deep underground within dense rock strata and complex geological structures, making it increasingly difficult to create volumetric fractures through conventional hydraulic fracturing. This paper introduces a novel method of supercritical energetic fluid thermal shock fracturing. It pioneers a CO_(2) deflagration impact triaxial pneumatic fracturing experimental system, using high-strength similar materials to simulate deep, hard rock masses. The study investigates the rock-breaking process and crack propagation patterns under supercritical CO_(2) thermal shock, revealing and discussing the types of thermal shock-induced fractures, their formation conditions, and discrimination criteria. The research indicates that higher supercritical CO_(2) thermal shock pressures and faster pressure release rates facilitate the formation of radial branching fractures, circumferential cracks, and branch cracks. Typically, CO_(2) thermal shock generates 3–5 radial main cracks, which is significantly more than the single main crack formed by hydraulic fracturing. The formation of branched cracks is often caused by compression-shear failure and occurs under relatively harsh conditions, determined by the confining pressure, rock properties, peak thermal shock pressure, and the pressure sustained post-decompression. The findings are expected to offer a safe, efficient, and controllable shockwave method of supercritical fluid thermal shock fracturing for the exploitation of deep unconventional oil and gas resources. 展开更多
关键词 Cracking mechanism Supercritical CO_(2) True triaxial experimental Impact fracturing
在线阅读 下载PDF
True triaxial unloading test on the mechanical behaviors of sandstone:Effects of the intermediate principal stress and structural plane 被引量:1
12
作者 Fan Feng Zhiwei Xie +3 位作者 Shaojie Chen Diyuan Li Siyu Peng Tong Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2208-2226,共19页
A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states... A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments. 展开更多
关键词 True triaxial unloading Dip angle of structural plane Intermediate principal stress Mechanical behaviors Cracking modes Failure criterion
在线阅读 下载PDF
Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression
13
作者 Qian Yin Fan Wen +7 位作者 Zhigang Tao Hai Pu Tianci Deng Yaoyao Meng Qingbin Meng Hongwen Jing Bo Meng Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期311-324,共14页
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio... The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure. 展开更多
关键词 cemented gangue backfill materials particle size distribution true triaxial compression test carbon nanotubes mechanical properties failure modes
在线阅读 下载PDF
A comprehensive study of the mechanical properties of rock-like materials for inelastic deformation model establishment
14
作者 TRIMONOVA Mariia STEFANOV Yuri +1 位作者 DUBINYA Nikita BAKEEV Rustam 《地质力学学报》 北大核心 2025年第3期475-490,共16页
[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study... [Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development. 展开更多
关键词 plastic deformation internal friction shear strength triaxial compression “Brazilian”test loading diagrams
在线阅读 下载PDF
Hydrochar effects on the microstructure and hydromechanical behaviour of unsaturated compacted soils
15
作者 Huan Dong Anthony Kwan Leung +2 位作者 Jianbin Liu Ali Akbar Karimzadeh Rui Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期6045-6053,共9页
The effectiveness of using vegetation to stabilise shallow soil slopes heavily depends on the survival of vegetation,yet the amplification of extreme events induced by climate change threatens the health of plants cov... The effectiveness of using vegetation to stabilise shallow soil slopes heavily depends on the survival of vegetation,yet the amplification of extreme events induced by climate change threatens the health of plants covering slopes.Hydrochar is an environmentally friendly soil amender that can achieve the potential benefits of promoting plant growth for slope stabilisation and facilitation of waste upcycling.The mechanism underlying the hydrochar effects on the mechanical behaviour of unsaturated soils remains unclear.This study investigated the influence of grass-derived hydrochar on the water retention,compressibility,and shear strength of a compacted siltyeclay sand.Soil microstructural changes due to hydrochar amendment were measured to explain the soilehydrochar hydromechanical interaction.The increase in suction resulted in a less significant increase in yield stress and a negligible reduction in compressibility of the hydrochar-amended soil compared with the unamended case.This phenomenon was observed because hydrochar addition reduced the large pores with diameters greater than the macropore peak of 60 mm due to pore filling by hydrochar particles,resulting in a less substantial volume contraction during drying.Hydrochar introduced more significant effects on the soil’s shear strength in an unsaturated state compared to a saturated case.Despite the similarity of the unsaturated amended soil with the critical-state friction angle to the saturated case,the former exhibited a greater shear strength because the hydrochar addition improved water retention capability.As a result,the degree of saturation and,hence,Bishop’s effective stress were higher than those for the unamended case for a given suction. 展开更多
关键词 Hydrochar Saturated soils Unsaturated soils Mechanical behaviour Triaxial tests Critical state
在线阅读 下载PDF
Estimation of parameters for 3D geomechanical modeling from triaxial test results
16
作者 Artem Kukhtinskii 《Energy Geoscience》 2025年第1期1-6,共6页
Triaxial testing serves as a fundamental method for evaluating the elastic and strength properties of rocks,crucial for developing accurate 3D geomechanical models.This paper presents a novel method for determining st... Triaxial testing serves as a fundamental method for evaluating the elastic and strength properties of rocks,crucial for developing accurate 3D geomechanical models.This paper presents a novel method for determining strength parameters by incorporating the dependence of uniaxial compressive strength(UCS)on P-wave velocity into the Hoek-Brown criterion.Additionally,a new approach is introduced to process triaxial test data efficiently using Python libraries such as SciPy,NumPy,Matplotlib,and Pandas.Furthermore,the paper addresses challenges in determining elastic parameters through triaxial testing.A Python script is developed to automate the calculation of elastic modulus and Poisson's ratio,over-coming subjectivity in selecting the linear portion of stress-strain curves.The script optimally identifies the linear region by minimizing the fit error with appropriate constraints,ensuring a more objective and standardized approach.The proposed methodologies are demonstrated using limestone specimens from Central Asian gas fields.These innovations offer faster,more reliable results,reducing error and enhancing the comparability of analyses in geomechanics,with potential applications across various geological settings. 展开更多
关键词 Strength criterion P-WAVE Elastic modulus Triaxial test Python scripting
在线阅读 下载PDF
Strength and failure characteristics of hard rock containing a single structural plane under varied loading angles : A true triaxial investigation
17
作者 XU Huai-sheng LI Shao-jun +3 位作者 XU Ding-ping LIU Xu-feng FENG Guang-liang WANG Zhao-feng 《Journal of Central South University》 2025年第5期1903-1921,共19页
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr... The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures. 展开更多
关键词 true triaxial compression hard rock structural plane loading angle STRENGTH failure characteristics
在线阅读 下载PDF
On uncertainty of elastic modulus measurements via nanoindentation mechanical testing and conventional triaxial testing
18
作者 Zhidi Wu Eric Edelman +2 位作者 Kathleen Ritterbush Yanbo Wang Brian McPherson 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4700-4714,共15页
Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are ... Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling. 展开更多
关键词 Elastic modulus Nanoindentation test Triaxial test Scratch test Uncertainty source Uncertainty quantification Pore space
在线阅读 下载PDF
Effects of hydration on the mechanical properties of deep shale under true triaxial stress:A case study of Fuling shale gas in Sichuan Basin,SW China
19
作者 ZHAO Jinzhou YU Zhihao +5 位作者 REN Lan LIN Ran WU Jianfa SONG Yi SHEN Cheng SUN Ying 《Petroleum Exploration and Development》 2025年第3期795-806,共12页
This study takes shale samples from the Jiaoshiba block in the Fuling shale gas field of the Sichuan Basin,and uses the true triaxial testing system to conduct a series of mechanical experiments under deep shale reser... This study takes shale samples from the Jiaoshiba block in the Fuling shale gas field of the Sichuan Basin,and uses the true triaxial testing system to conduct a series of mechanical experiments under deep shale reservoir conditions after shale hydration.Stress-strain data and mechanical parameters of shale after hydration under high temperature and high pressure were obtained to investigate the effects of reservoir temperature,hydration time and horizontal stress difference on the mechanical strength of shale after hydration.By using nonlinear regression and interpolation methods,a prediction model for the mechanical strength of shale after hydration was constructed,and the mechanical strength chart of deep shale under high stress difference was plotted.First,higher hydration temperature,longer hydration reaction time,and greater horizontal stress difference cause shale to enter the yield stage earlier during the compression process after hydration and to exhibit more prominent plastic characteristics,lower peak strength,peak strain,residual strength and elastic modulus,and higher Poisson's ratio.Second,the longer the hydration time,the smaller the impact of hydration temperature on the mechanical strength of deep shale is.As the horizontal stress difference increases,the peak strength and residual strength weaken intensely,and the peak strain,elastic modulus and Poisson's ratio deteriorate slowly.Third,the mechanical strength of shale decreases significantly in the first 5 days of hydration,but gradually stabilizes as the hydration time increases.Fourth,the visual mechanical strength chart helps to understand the post-fracturing dynamics in deep shale gas reservoir fracturing site and adjust the drainage and production plan in time. 展开更多
关键词 deep shale HYDRATION true triaxial stress mechanical strength hydraulic fracturing
在线阅读 下载PDF
Estimating rock strength parameters across varied failure criteria:Application of spreadsheet and R-based orthogonal regression to triaxial test data
20
作者 RobertoÚcar Luis Arlegui +1 位作者 Norly Belandria Francisco Torrijo 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4685-4699,共15页
Triaxial tests,a staple in rock engineering,are labor-intensive,sample-demanding,and costly,making their optimization highly advantageous.These tests are essential for characterizing rock strength,and by adopting a fa... Triaxial tests,a staple in rock engineering,are labor-intensive,sample-demanding,and costly,making their optimization highly advantageous.These tests are essential for characterizing rock strength,and by adopting a failure criterion,they allow for the derivation of criterion parameters through regression,facilitating their integration into modeling programs.In this study,we introduce the application of an underutilized statistical technique—orthogonal regression—well-suited for analyzing triaxial test data.Additionally,we present an innovation in this technique by minimizing the Euclidean distance while incorporating orthogonality between vectors as a constraint,for the case of orthogonal linear regression.Also,we consider the Modified Least Squares method.We exemplify this approach by developing the necessary equations to apply the Mohr-Coulomb,Murrell,Hoek-Brown,andÚcar criteria,and implement these equations in both spreadsheet calculations and R scripts.Finally,we demonstrate the technique's application using five datasets of varied lithologies from specialized literature,showcasing its versatility and effectiveness. 展开更多
关键词 Rock failure criteria Nonlinear regression Orthogonal regression Triaxial testing Dot product
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部