期刊文献+
共找到2,524篇文章
< 1 2 127 >
每页显示 20 50 100
FEM tire model oriented to virtual experiment of off-road vehicle trafficability 被引量:2
1
作者 庞罕 张为公 王霞 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期540-544,共5页
In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed... In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed. The method to improve the precision of the model by the coefficients is presented. The constitutive equation of the three-parameter linear model and the stiffness matrix of four-node isoparametric elements are derived to construct the FEM (finite element method) tire model in plan stress. A demarcation and verification system is designed based on the six-dimensional wheel force transducer and the vertical tire force is measured under different velocities. The results show that the model and the method proposed are reasonable. 展开更多
关键词 trafficability tire model VISCOELASTICITY six-dimensional wheel force transducer
在线阅读 下载PDF
Design and Trafficability Study of Flexible Wheel for Planetary Exploration Rover 被引量:1
2
作者 李雯 高峰 徐国艳 《Journal of Beijing Institute of Technology》 EI CAS 2007年第3期279-283,共5页
To reduce sending costs, a flexible wheel configuration is proposed. The wheel is made of titanium alloy (Ti-6Al-4V) in consideration of the planetary environment factors (i. e. strong radiation, big temperature di... To reduce sending costs, a flexible wheel configuration is proposed. The wheel is made of titanium alloy (Ti-6Al-4V) in consideration of the planetary environment factors (i. e. strong radiation, big temperature differences, high vacuum), and mass constraint of launch vehicle. The advantages of the proposed wheel involves the potential for: ① small sending volume and mass, ② large deployed area and volume to reduce wheel loading, ③ a damping effect to smooth motion on rough terrain. To study the trafficability and tractive performance of the wheel concept, the drawbar pull and driven torque were calculated based on simplified model of terramechanics formulations. The results show that the wheel possesses sufficient drawbar pull to negotiate all types of soil stratums listed in this contribution. 展开更多
关键词 planetary rover flexible wheel wheel-soil interaction trafficability
在线阅读 下载PDF
Soil Trafficability Forecasting
3
作者 Marie-France Jones Paul Arp 《Open Journal of Forestry》 2019年第4期296-322,共27页
This article introduces and evaluates a Soil Trafficability Model (STRAM) designed to estimate and forecast potential rutting depth on forest soils due to heavy machine traffic. This approach was developed within the ... This article introduces and evaluates a Soil Trafficability Model (STRAM) designed to estimate and forecast potential rutting depth on forest soils due to heavy machine traffic. This approach was developed within the wood-forwarding context of four harvest blocks in Northern and Central New Brunswick. Field measurements used for model calibration involved determining soil rut depths, volumetric moisture content, bulk density, soil resistance to cone penetration (referred to as cone index, or CI), and the dimensionless nominal soil cone index (NCI) defined by the ratio of CI over wheel foot print pressure. With STRAM, rut depth is inferred from: 1) machine dimensions pertaining to estimating foot print area and pressure;2) pore-filled soil moisture content and related CI projections guided by year-round daily weather records using the Forest Hydrology Model (ForHyM);3) accounting for within-block soil property variations using multiple and Random Forest regression techniques. Subsequent evaluations of projected soil moisture, CI and rut-depth values accounted for about 40 (multiple regression) and 80 (Random Forest) percent of the corresponding field measured values. 展开更多
关键词 SOIL trafficability WOOD FORWARDING PLOT Surveys Regression Comparisons Cartographic Depth-to-Water
在线阅读 下载PDF
A Diffusion Model for Traffic Data Imputation 被引量:1
4
作者 Bo Lu Qinghai Miao +5 位作者 Yahui Liu Tariku Sinshaw Tamir Hongxia Zhao Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期606-617,共12页
Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has prov... Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has proven highly successful in image generation,speech generation,time series modelling etc.and now opens a new avenue for traffic data imputation.In this paper,we propose a conditional diffusion model,called the implicit-explicit diffusion model,for traffic data imputation.This model exploits both the implicit and explicit feature of the data simultaneously.More specifically,we design two types of feature extraction modules,one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series.This approach not only inherits the advantages of the diffusion model for estimating missing data,but also takes into account the multiscale correlation inherent in traffic data.To illustrate the performance of the model,extensive experiments are conducted on three real-world time series datasets using different missing rates.The experimental results demonstrate that the model improves imputation accuracy and generalization capability. 展开更多
关键词 Data imputation diffusion model implicit feature time series traffic data
在线阅读 下载PDF
Modelling of Daily Long-Term Urban Road Traffic Flow Distribution: A Poisson Process Approach 被引量:1
5
作者 Jojo D. Lartey 《Open Journal of Modelling and Simulation》 2025年第1期89-105,共17页
Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel... Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management. 展开更多
关键词 Poisson Process Macroscopic Traffic Flow Urban Road Long-Term Forecast Multiple Entries-Exits Dynamics
在线阅读 下载PDF
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
6
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation 被引量:1
7
作者 Hamza Murad Khan Anwar Khan +3 位作者 Santos Gracia Villar Luis Alonso DzulLopez Abdulaziz Almaleh Abdullah M.Al-Qahtani 《Computers, Materials & Continua》 2025年第5期3369-3388,共20页
Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models... Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes. 展开更多
关键词 Short-term traffic prediction sequential time series prediction TPE tree-structured parzen estimator LSTM hyperparameter tuning hybrid prediction model
在线阅读 下载PDF
YOLO-based lightweight traffic sign detection algorithm and mobile deployment 被引量:1
8
作者 WU Yaqin ZHANG Tao +2 位作者 NIU Jianjun CHANG Yan LIU Ganjun 《Optoelectronics Letters》 2025年第4期249-256,共8页
This paper proposes a lightweight traffic sign detection system based on you only look once(YOLO).Firstly,the classification to fusion(C2f)structure is integrated into the backbone network,employing deformable convolu... This paper proposes a lightweight traffic sign detection system based on you only look once(YOLO).Firstly,the classification to fusion(C2f)structure is integrated into the backbone network,employing deformable convolution and bi-directional feature pyramid network(BiFPN)_Concat to improve the adaptability of the network.Secondly,the simple attention module(SimAm)is embedded to prioritize key features and reduce the complexity of the model after the C2f layer at the end of the backbone network.Next,the focal efficient intersection over union(EloU)is introduced to adjust the weights of challenging samples.Finally,we accomplish the design and deployment for the mobile app.The results demonstrate improvements,with the F1 score of 0.8987,mean average precision(mAP)@0.5 of 98.8%,mAP@0.5:0.95 of 75.6%,and the detection speed of 50 frames per second(FPS). 展开更多
关键词 c f layer simple attention module simam reduce complexity traffic sign detection prioritize key features backbone networkemploying classification backbone networknextthe
原文传递
Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks:Causes,Solutions,and Countermeasures
9
作者 Muhammad Qasim Khan Fazal Malik +1 位作者 Fahad Alturise Noor Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期123-153,共31页
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a... Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject. 展开更多
关键词 Signaling storm problems control signaling load analytical modeling 3GPP networks smart devices diameter signaling mobile broadband data access data traffic mobility management signaling network architecture 5G mobile communication
在线阅读 下载PDF
Look-ahead horizon-based energy optimization with traffic prediction for connected HEVs
10
作者 XU Fu-guo SHEN Tie-long 《控制理论与应用》 北大核心 2025年第8期1534-1542,共9页
With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec... With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed. 展开更多
关键词 look-ahead horizon connected and automated vehicle(CAV) hybrid electric vehicle(HEV) energy efficiency optimization traffic prediction
在线阅读 下载PDF
Experimental analysis of the slip sinkage effect based on real vehicle test 被引量:1
11
作者 杨帆 林国余 +1 位作者 张为公 王宁波 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期201-207,共7页
To improve the semi-empirical model, the slip sinkage effect is analyzed based on the real vehicle test. A dynamic testing system is used to gain the dynamic responses of wheel-soil interactions, The Gauss-Newton algo... To improve the semi-empirical model, the slip sinkage effect is analyzed based on the real vehicle test. A dynamic testing system is used to gain the dynamic responses of wheel-soil interactions, The Gauss-Newton algorithm is adopted to estimate the undetermined parameters involved in the slip sinkage models. Wong's original model is compared with three typical slip sinkage models on the prediction performance of a drawbar pull. The maximum error rate, root mean squared error and correlation coefficient are utilized to evaluate the performance. The results indicate that the slip sinkage models outperform Wong's model and greatly improve the prediction accuracy. Lyasko's model is confirmed as an outstanding one for its comprehensive performance. Hence, the existence of the slip sinkage effect is validated. Lyasko's model is selected as an optimal one for the practical evaluation of military vehicle trafficability. 展开更多
关键词 vehicle trafficability slip sinkage effect Gauss-Newton algorithm real vehicle test wheel force transducer
在线阅读 下载PDF
Traffic Problems in Michigan and Using Intelligent Transportation Systems to Solve
12
作者 Chaudhry Abu Bakar Imran 《Journal of Traffic and Transportation Engineering》 2025年第1期17-27,共11页
The aim of this study is to determine the level to which the public is aware about ITS(intelligent transportation systems)technologies and how they perceive the potential advantages and inhibitors of ITS in Michigan.A... The aim of this study is to determine the level to which the public is aware about ITS(intelligent transportation systems)technologies and how they perceive the potential advantages and inhibitors of ITS in Michigan.A survey was performed with 200 participants living in Michigan,in urban,suburban and rural areas.Questions covered in the survey included how often and how bad traffic congestion occurred,how familiar travelers were with ITS technologies(adaptive traffic signals,real time monitoring of the traffic)and how much support travelers would provide for ITS initiatives.Results reveal that there is a high degree of traffic congestion awareness,there is low public awareness of ITS technologies.While respondents who were aware of ITS solutions had positive views about deploying them,especially in urban areas,they were less supportive of ITS solutions than they were among those who did not know much about these.Factors including area of residence,commute time and age were perceived to influence ITS along with more positive attitudes to ITS amongst urban dwellers and younger respondents.Analysis of key barriers to ITS implementation reflected high initial costs,challenges with technical integration and users’concerns surrounding privacy. 展开更多
关键词 Traffic congestion ITS ITS awareness public perception traffic management MICHIGAN SURVEY environmental impact economic benefits public support
在线阅读 下载PDF
The Evolution of Traffic Lights:A Comprehensive Analysis of Traffic Management Systems in Shanghai
13
作者 Zhichen Eden Guo 《Journal of Electronic Research and Application》 2025年第1期330-336,共7页
This paper comprehensively analyzes the evolution of traffic light systems in Shanghai,highlighting the technological advancements and their impact on traffic management and safety.Starting from the historical context... This paper comprehensively analyzes the evolution of traffic light systems in Shanghai,highlighting the technological advancements and their impact on traffic management and safety.Starting from the historical context of the first traffic light in London in 1868 to the modern automated systems,the study explores the complexity and adaptability of traffic lights in Shanghai.Through field surveys and interviews with traffic engineers,the paper debunks common misconceptions about traffic light operation,revealing a sophisticated network that responds to real-time traffic dynamics using software like the Sydney Coordinated Adaptive Traffic System(SCATS)6.The study also discusses the importance of pedestrian safety,suggesting future enhancements such as Global Positioning System(GPS)based emergency systems and accommodations for color-blind individuals.The paper further delves into the potential of Artificial Intelligence(AI)and Vehicle-to-Infrastructure(V21)technology in revolutionizing traffic light systems,emphasizing their role in improving traffic flow and safety.The findings underscore Shanghai’s progressive approach to traffic management,showcasing the city’s commitment to optimizing traffic control solutions for the benefit of both vehicles and pedestrians. 展开更多
关键词 Traffic management Traffic light Traffic network Smart city V2I(vehicle-to-infrastructure)
在线阅读 下载PDF
Learning-Based Delay Sensitive and Reliable Traffic Adaptation for DC-PLC and 5G Integrated Multi-Mode Heterogeneous Networks
14
作者 Tian Gexing Wang Ruiqiuyu +6 位作者 Pan Chao Zhou Zhenyu Yang Junzhong Zhao Chenkai Chen Bei Yang Sen Shahid Mumtaz 《China Communications》 2025年第4期65-80,共16页
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li... Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms. 展开更多
关键词 DC-PLC and 5G integration multi-mode heterogeneous networks traffic adaptation traffic admission control traffic partition
在线阅读 下载PDF
NetST:Network Encrypted Traffic Classification Based on Swin Transformer
15
作者 Jianwei Zhang Hongying Zhao +2 位作者 Yuan Feng Zengyu Cai Liang Zhu 《Computers, Materials & Continua》 2025年第9期5279-5298,共20页
Network traffic classification is a crucial research area aimed at improving quality of service,simplifying network management,and enhancing network security.To address the growing complexity of cryptography,researche... Network traffic classification is a crucial research area aimed at improving quality of service,simplifying network management,and enhancing network security.To address the growing complexity of cryptography,researchers have proposed various machine learning and deep learning approaches to tackle this challenge.However,existing mainstream methods face several general issues.On one hand,the widely used Transformer architecture exhibits high computational complexity,which negatively impacts its efficiency.On the other hand,traditional methods are often unreliable in traffic representation,frequently losing important byte information while retaining unnecessary biases.To address these problems,this paper introduces the Swin Transformer architecture into the domain of network traffic classification and proposes the NetST(Network Swin Transformer)model.This model improves the Swin Transformer to better accommodate the characteristics of network traffic,effectively addressing efficiency issues.Furthermore,this paper presents a traffic representation scheme designed to extract meaningful information from large volumes of traffic while minimizing bias.We integrate four datasets relevant to network traffic classification for our experiments,and the results demonstrate that NetST achieves a high accuracy rate while maintaining low memory usage. 展开更多
关键词 Traffic classification encrypted network traffic Swin Transformer network management deep learning
在线阅读 下载PDF
Montgomery Township's wavy lanes
16
作者 满洪亮 《疯狂英语(新读写)》 2025年第8期38-40,78,共4页
1 Authorities in Montgomery Township,Pennsylvania,have introduced wavy lane patterns on some streets in an effort to slow down traffic in the area.2 Driving along Grays Lane in Montgomery Township for the first time m... 1 Authorities in Montgomery Township,Pennsylvania,have introduced wavy lane patterns on some streets in an effort to slow down traffic in the area.2 Driving along Grays Lane in Montgomery Township for the first time must be challenging.Thats because the regular lane patterns have been replaced by wavy and zig⁃zag lines that look like they were painted by a drunk.But they are wavy by design.According to Montgomery Township officials,the unusual patterns were thought as the best solution to discouraging speeding on some of the streets.Police sources told local media outlets that the“traffic⁃calming measures”were installed in response to numerous complaints about certain streets being used as“speedways”. 展开更多
关键词 discouraging speedin grays lane SPEEDING regular lane patterns slow down traffic traffic calming wavy zig zag lines wavy lane patterns
在线阅读 下载PDF
A structured distributed learning framework for irregular cellular spatial-temporal traffic prediction
17
作者 Xiangyu Chen Kaisa Zhang +4 位作者 Gang Chuai Weidong Gao Xuewen Liu Yibo Zhang Yijian Hou 《Digital Communications and Networks》 2025年第5期1457-1468,共12页
Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaboratio... Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaborations,and edge computing,spatial-temporal traffic data has taken on a distributed nature.Consequently,noncentralized spatial-temporal traffic prediction solutions have emerged as a recent research focus.Currently,the majority of research typically adopts federated learning methods to train traffic prediction models distributed on each base station.This method reduces additional burden on communication systems.However,this method has a drawback:it cannot handle irregular traffic data.Due to unstable wireless network environments,device failures,insufficient storage resources,etc.,data missing inevitably occurs during the process of collecting traffic data.This results in the irregular nature of distributed traffic data.Yet,commonly used traffic prediction models such as Recurrent Neural Networks(RNN)and Long Short-Term Memory(LSTM)typically assume that the data is complete and regular.To address the challenge of handling irregular traffic data,this paper transforms irregular traffic prediction into problems of estimating latent variables and generating future traffic.To solve the aforementioned problems,this paper introduces split learning to design a structured distributed learning framework.The framework comprises a Global-level Spatial structure mining Model(GSM)and several Nodelevel Generative Models(NGMs).NGM and GSM represent Seq2Seq models deployed on the base station and graph neural network models deployed on the cloud or central controller.Firstly,the time embedding layer in NGM establishes the mapping relationship between irregular traffic data and regular latent temporal feature variables.Secondly,GSM collects statistical feature parameters of latent temporal feature variables from various nodes and executes graph embedding for spatial-temporal traffic data.Finally,NGM generates future traffic based on latent temporal and spatial feature variables.The introduction of the time attention mechanism enhances the framework’s capability to handle irregular traffic data.Graph attention network introduces spatially correlated base station traffic feature information into local traffic prediction,which compensates for missing information in local irregular traffic data.The proposed framework effectively addresses the distributed prediction issues of irregular traffic data.By testing on real world datasets,the proposed framework improves traffic prediction accuracy by 35%compared to other commonly used distributed traffic prediction methods. 展开更多
关键词 Network measurement and analysis Distributed learning Irregular time series Cellular spatial-temporal traffic Traffic prediction
在线阅读 下载PDF
A Novel Reduced Error Pruning Tree Forest with Time-Based Missing Data Imputation(REPTF-TMDI)for Traffic Flow Prediction
18
作者 Yunus Dogan Goksu Tuysuzoglu +4 位作者 Elife Ozturk Kiyak Bita Ghasemkhani Kokten Ulas Birant Semih Utku Derya Birant 《Computer Modeling in Engineering & Sciences》 2025年第8期1677-1715,共39页
Accurate traffic flow prediction(TFP)is vital for efficient and sustainable transportation management and the development of intelligent traffic systems.However,missing data in real-world traffic datasets poses a sign... Accurate traffic flow prediction(TFP)is vital for efficient and sustainable transportation management and the development of intelligent traffic systems.However,missing data in real-world traffic datasets poses a significant challenge to maintaining prediction precision.This study introduces REPTF-TMDI,a novel method that combines a Reduced Error Pruning Tree Forest(REPTree Forest)with a newly proposed Time-based Missing Data Imputation(TMDI)approach.The REP Tree Forest,an ensemble learning approach,is tailored for time-related traffic data to enhance predictive accuracy and support the evolution of sustainable urbanmobility solutions.Meanwhile,the TMDI approach exploits temporal patterns to estimate missing values reliably whenever empty fields are encountered.The proposed method was evaluated using hourly traffic flow data from a major U.S.roadway spanning 2012-2018,incorporating temporal features(e.g.,hour,day,month,year,weekday),holiday indicator,and weather conditions(temperature,rain,snow,and cloud coverage).Experimental results demonstrated that the REPTF-TMDI method outperformed conventional imputation techniques across various missing data ratios by achieving an average 11.76%improvement in terms of correlation coefficient(R).Furthermore,REPTree Forest achieved improvements of 68.62%in RMSE and 70.52%in MAE compared to existing state-of-the-art models.These findings highlight the method’s ability to significantly boost traffic flow prediction accuracy,even in the presence of missing data,thereby contributing to the broader objectives of sustainable urban transportation systems. 展开更多
关键词 Machine learning traffic flow prediction missing data imputation reduced error pruning tree(REPTree) sustainable transportation systems traffic management artificial intelligence
在线阅读 下载PDF
Advancing operation safety and efficiency by innovative flight trajectory prediction
19
作者 Zhijie CHEN 《Chinese Journal of Aeronautics》 2025年第7期285-287,共3页
1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace c... 1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO). 展开更多
关键词 flight trajectory prediction air traffic control air traffic control atc future trajec flight trajectory prediction ftp airspace complexity conflict detection air transportation
原文传递
Soft Resource Slicing for Industrial Mixed Traffic in 5G Networks
20
作者 Jingfang Ding Meng Zheng Haibin Yu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期463-465,共3页
Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-toler... Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme. 展开更多
关键词 G networks industrial mixed traffic dynamic switching soft slicing strategy periodic delay sensitive traffic soft slicing dynamic switching g networks dynamic switching strategy
在线阅读 下载PDF
上一页 1 2 127 下一页 到第
使用帮助 返回顶部