In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed...In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed. The method to improve the precision of the model by the coefficients is presented. The constitutive equation of the three-parameter linear model and the stiffness matrix of four-node isoparametric elements are derived to construct the FEM (finite element method) tire model in plan stress. A demarcation and verification system is designed based on the six-dimensional wheel force transducer and the vertical tire force is measured under different velocities. The results show that the model and the method proposed are reasonable.展开更多
To reduce sending costs, a flexible wheel configuration is proposed. The wheel is made of titanium alloy (Ti-6Al-4V) in consideration of the planetary environment factors (i. e. strong radiation, big temperature di...To reduce sending costs, a flexible wheel configuration is proposed. The wheel is made of titanium alloy (Ti-6Al-4V) in consideration of the planetary environment factors (i. e. strong radiation, big temperature differences, high vacuum), and mass constraint of launch vehicle. The advantages of the proposed wheel involves the potential for: ① small sending volume and mass, ② large deployed area and volume to reduce wheel loading, ③ a damping effect to smooth motion on rough terrain. To study the trafficability and tractive performance of the wheel concept, the drawbar pull and driven torque were calculated based on simplified model of terramechanics formulations. The results show that the wheel possesses sufficient drawbar pull to negotiate all types of soil stratums listed in this contribution.展开更多
This article introduces and evaluates a Soil Trafficability Model (STRAM) designed to estimate and forecast potential rutting depth on forest soils due to heavy machine traffic. This approach was developed within the ...This article introduces and evaluates a Soil Trafficability Model (STRAM) designed to estimate and forecast potential rutting depth on forest soils due to heavy machine traffic. This approach was developed within the wood-forwarding context of four harvest blocks in Northern and Central New Brunswick. Field measurements used for model calibration involved determining soil rut depths, volumetric moisture content, bulk density, soil resistance to cone penetration (referred to as cone index, or CI), and the dimensionless nominal soil cone index (NCI) defined by the ratio of CI over wheel foot print pressure. With STRAM, rut depth is inferred from: 1) machine dimensions pertaining to estimating foot print area and pressure;2) pore-filled soil moisture content and related CI projections guided by year-round daily weather records using the Forest Hydrology Model (ForHyM);3) accounting for within-block soil property variations using multiple and Random Forest regression techniques. Subsequent evaluations of projected soil moisture, CI and rut-depth values accounted for about 40 (multiple regression) and 80 (Random Forest) percent of the corresponding field measured values.展开更多
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based...With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.展开更多
Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models...Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec...With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.展开更多
The aim of this study is to determine the level to which the public is aware about ITS(intelligent transportation systems)technologies and how they perceive the potential advantages and inhibitors of ITS in Michigan.A...The aim of this study is to determine the level to which the public is aware about ITS(intelligent transportation systems)technologies and how they perceive the potential advantages and inhibitors of ITS in Michigan.A survey was performed with 200 participants living in Michigan,in urban,suburban and rural areas.Questions covered in the survey included how often and how bad traffic congestion occurred,how familiar travelers were with ITS technologies(adaptive traffic signals,real time monitoring of the traffic)and how much support travelers would provide for ITS initiatives.Results reveal that there is a high degree of traffic congestion awareness,there is low public awareness of ITS technologies.While respondents who were aware of ITS solutions had positive views about deploying them,especially in urban areas,they were less supportive of ITS solutions than they were among those who did not know much about these.Factors including area of residence,commute time and age were perceived to influence ITS along with more positive attitudes to ITS amongst urban dwellers and younger respondents.Analysis of key barriers to ITS implementation reflected high initial costs,challenges with technical integration and users’concerns surrounding privacy.展开更多
This paper comprehensively analyzes the evolution of traffic light systems in Shanghai,highlighting the technological advancements and their impact on traffic management and safety.Starting from the historical context...This paper comprehensively analyzes the evolution of traffic light systems in Shanghai,highlighting the technological advancements and their impact on traffic management and safety.Starting from the historical context of the first traffic light in London in 1868 to the modern automated systems,the study explores the complexity and adaptability of traffic lights in Shanghai.Through field surveys and interviews with traffic engineers,the paper debunks common misconceptions about traffic light operation,revealing a sophisticated network that responds to real-time traffic dynamics using software like the Sydney Coordinated Adaptive Traffic System(SCATS)6.The study also discusses the importance of pedestrian safety,suggesting future enhancements such as Global Positioning System(GPS)based emergency systems and accommodations for color-blind individuals.The paper further delves into the potential of Artificial Intelligence(AI)and Vehicle-to-Infrastructure(V21)technology in revolutionizing traffic light systems,emphasizing their role in improving traffic flow and safety.The findings underscore Shanghai’s progressive approach to traffic management,showcasing the city’s commitment to optimizing traffic control solutions for the benefit of both vehicles and pedestrians.展开更多
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li...Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.展开更多
Network traffic classification is a crucial research area aimed at improving quality of service,simplifying network management,and enhancing network security.To address the growing complexity of cryptography,researche...Network traffic classification is a crucial research area aimed at improving quality of service,simplifying network management,and enhancing network security.To address the growing complexity of cryptography,researchers have proposed various machine learning and deep learning approaches to tackle this challenge.However,existing mainstream methods face several general issues.On one hand,the widely used Transformer architecture exhibits high computational complexity,which negatively impacts its efficiency.On the other hand,traditional methods are often unreliable in traffic representation,frequently losing important byte information while retaining unnecessary biases.To address these problems,this paper introduces the Swin Transformer architecture into the domain of network traffic classification and proposes the NetST(Network Swin Transformer)model.This model improves the Swin Transformer to better accommodate the characteristics of network traffic,effectively addressing efficiency issues.Furthermore,this paper presents a traffic representation scheme designed to extract meaningful information from large volumes of traffic while minimizing bias.We integrate four datasets relevant to network traffic classification for our experiments,and the results demonstrate that NetST achieves a high accuracy rate while maintaining low memory usage.展开更多
1 Authorities in Montgomery Township,Pennsylvania,have introduced wavy lane patterns on some streets in an effort to slow down traffic in the area.2 Driving along Grays Lane in Montgomery Township for the first time m...1 Authorities in Montgomery Township,Pennsylvania,have introduced wavy lane patterns on some streets in an effort to slow down traffic in the area.2 Driving along Grays Lane in Montgomery Township for the first time must be challenging.Thats because the regular lane patterns have been replaced by wavy and zig⁃zag lines that look like they were painted by a drunk.But they are wavy by design.According to Montgomery Township officials,the unusual patterns were thought as the best solution to discouraging speeding on some of the streets.Police sources told local media outlets that the“traffic⁃calming measures”were installed in response to numerous complaints about certain streets being used as“speedways”.展开更多
Accurate traffic flow prediction(TFP)is vital for efficient and sustainable transportation management and the development of intelligent traffic systems.However,missing data in real-world traffic datasets poses a sign...Accurate traffic flow prediction(TFP)is vital for efficient and sustainable transportation management and the development of intelligent traffic systems.However,missing data in real-world traffic datasets poses a significant challenge to maintaining prediction precision.This study introduces REPTF-TMDI,a novel method that combines a Reduced Error Pruning Tree Forest(REPTree Forest)with a newly proposed Time-based Missing Data Imputation(TMDI)approach.The REP Tree Forest,an ensemble learning approach,is tailored for time-related traffic data to enhance predictive accuracy and support the evolution of sustainable urbanmobility solutions.Meanwhile,the TMDI approach exploits temporal patterns to estimate missing values reliably whenever empty fields are encountered.The proposed method was evaluated using hourly traffic flow data from a major U.S.roadway spanning 2012-2018,incorporating temporal features(e.g.,hour,day,month,year,weekday),holiday indicator,and weather conditions(temperature,rain,snow,and cloud coverage).Experimental results demonstrated that the REPTF-TMDI method outperformed conventional imputation techniques across various missing data ratios by achieving an average 11.76%improvement in terms of correlation coefficient(R).Furthermore,REPTree Forest achieved improvements of 68.62%in RMSE and 70.52%in MAE compared to existing state-of-the-art models.These findings highlight the method’s ability to significantly boost traffic flow prediction accuracy,even in the presence of missing data,thereby contributing to the broader objectives of sustainable urban transportation systems.展开更多
1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace c...1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).展开更多
Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-toler...Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme.展开更多
The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable chall...The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable challenge to cybersecurity. Traditional machine learning and deep learning techniques often fall short in identifying encrypted malicious traffic due to their inability to fully extract and utilize the implicit relational and positional information embedded within data packets. This limitation has led to an unresolved challenge in the cybersecurity community: how to effectively extract valuable insights from the complex patterns of traffic packet transmission. Consequently, this paper introduces the TB-Graph model, an encrypted malicious traffic classification model based on a relational graph attention network. The model is a heterogeneous traffic burst graph that embeds side-channel features, which are unaffected by encryption, into the graph nodes and connects them with three different types of burst edges. Subsequently, we design a relational positional coding that prevents the loss of temporal relationships between the original traffic flows during graph transformation. Ultimately, TB-Graph leverages the powerful graph representation learning capabilities of Relational Graph Attention Network (RGAT) to extract latent behavioral features from the burst graph nodes and edge relationships. Experimental results show that TB-Graph outperforms various state-of-the-art methods in fine-grained encrypted malicious traffic classification tasks on two public datasets, indicating its enhanced capability for identifying encrypted malicious traffic.展开更多
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ...Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.展开更多
Convolutional neural networks(CNNs)exhibit superior performance in image feature extraction,making them extensively used in the area of traffic sign recognition.However,the design of existing traffic sign recognition ...Convolutional neural networks(CNNs)exhibit superior performance in image feature extraction,making them extensively used in the area of traffic sign recognition.However,the design of existing traffic sign recognition algorithms often relies on expert knowledge to enhance the image feature extraction networks,necessitating image preprocessing and model parameter tuning.This increases the complexity of the model design process.This study introduces an evolutionary neural architecture search(ENAS)algorithm for the automatic design of neural network models tailored for traffic sign recognition.By integrating the construction parameters of residual network(ResNet)into evolutionary algorithms(EAs),we automatically generate lightweight networks for traffic sign recognition,utilizing blocks as the fundamental building units.Experimental evaluations on the German traffic sign recognition benchmark(GTSRB)dataset reveal that the algorithm attains a recognition accuracy of 99.32%,with a mere 2.8×10^(6)parameters.Experimental results comparing the proposed method with other traffic sign recognition algorithms demonstrate that the method can more efficiently discover neural network architectures,significantly reducing the number of network parameters while maintaining recognition accuracy.展开更多
Unmanned Aerial Vehicles(UAVs)are increasingly employed in traffic surveillance,urban planning,and infrastructure monitoring due to their cost-effectiveness,flexibility,and high-resolution imaging.However,vehicle dete...Unmanned Aerial Vehicles(UAVs)are increasingly employed in traffic surveillance,urban planning,and infrastructure monitoring due to their cost-effectiveness,flexibility,and high-resolution imaging.However,vehicle detection and classification in aerial imagery remain challenging due to scale variations from fluctuating UAV altitudes,frequent occlusions in dense traffic,and environmental noise,such as shadows and lighting inconsistencies.Traditional methods,including sliding-window searches and shallow learning techniques,struggle with computational inefficiency and robustness under dynamic conditions.To address these limitations,this study proposes a six-stage hierarchical framework integrating radiometric calibration,deep learning,and classical feature engineering.The workflow begins with radiometric calibration to normalize pixel intensities and mitigate sensor noise,followed by Conditional Random Field(CRF)segmentation to isolate vehicles.YOLOv9,equipped with a bi-directional feature pyramid network(BiFPN),ensures precise multi-scale object detection.Hybrid feature extraction employs Maximally Stable Extremal Regions(MSER)for stable contour detection,Binary Robust Independent Elementary Features(BRIEF)for texture encoding,and Affine-SIFT(ASIFT)for viewpoint invariance.Quadratic Discriminant Analysis(QDA)enhances feature discrimination,while a Probabilistic Neural Network(PNN)performs Bayesian probability-based classification.Tested on the Roundabout Aerial Imagery(15,474 images,985K instances)and AU-AIR(32,823 instances,7 classes)datasets,the model achieves state-of-the-art accuracy of 95.54%and 94.14%,respectively.Its superior performance in detecting small-scale vehicles and resolving occlusions highlights its potential for intelligent traffic systems.Future work will extend testing to nighttime and adverse weather conditions while optimizing real-time UAV inference.展开更多
Metaverse is a new emerging concept building up a virtual environment for the user using Virtual Reality(VR)and blockchain technology but introduces privacy risks.Now,a series of challenges arise in Metaverse security...Metaverse is a new emerging concept building up a virtual environment for the user using Virtual Reality(VR)and blockchain technology but introduces privacy risks.Now,a series of challenges arise in Metaverse security,including massive data traffic breaches,large-scale user tracking,analysis activities,unreliable Artificial Intelligence(AI)analysis results,and social engineering security for people.In this work,we concentrate on Decentraland and Sandbox,two well-known Metaverse applications in Web 3.0.Our experiments analyze,for the first time,the personal privacy data exposed by Metaverse applications and services from a combined perspective of network traffic and privacy policy.We develop a lightweight traffic processing approach suitable for the Web 3.0 environment,which does not rely on complex decryption or reverse engineering techniques.We propose a smart contract interaction traffic analysis method capable of retrieving user interactions with Metaverse applications and blockchain smart contracts.This method provides a new approach to de-anonymizing users'identities through Metaverse applications.Our system,METAseen,analyzes and compares network traffic with the privacy policies of Metaverse applications to identify controversial data collection practices.The consistency check experiment reveals that the data types exposed by Metaverse applications include Personal Identifiable Information(PII),device information,and Metaverse-related data.By comparing the data flows observed in the network traffic with assertions made in the privacy regulations of the Metaverse service provider,we discovered that far more than 49%of the Metaverse data flows needed to be disclosed appropriately.展开更多
文摘In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed. The method to improve the precision of the model by the coefficients is presented. The constitutive equation of the three-parameter linear model and the stiffness matrix of four-node isoparametric elements are derived to construct the FEM (finite element method) tire model in plan stress. A demarcation and verification system is designed based on the six-dimensional wheel force transducer and the vertical tire force is measured under different velocities. The results show that the model and the method proposed are reasonable.
文摘To reduce sending costs, a flexible wheel configuration is proposed. The wheel is made of titanium alloy (Ti-6Al-4V) in consideration of the planetary environment factors (i. e. strong radiation, big temperature differences, high vacuum), and mass constraint of launch vehicle. The advantages of the proposed wheel involves the potential for: ① small sending volume and mass, ② large deployed area and volume to reduce wheel loading, ③ a damping effect to smooth motion on rough terrain. To study the trafficability and tractive performance of the wheel concept, the drawbar pull and driven torque were calculated based on simplified model of terramechanics formulations. The results show that the wheel possesses sufficient drawbar pull to negotiate all types of soil stratums listed in this contribution.
文摘This article introduces and evaluates a Soil Trafficability Model (STRAM) designed to estimate and forecast potential rutting depth on forest soils due to heavy machine traffic. This approach was developed within the wood-forwarding context of four harvest blocks in Northern and Central New Brunswick. Field measurements used for model calibration involved determining soil rut depths, volumetric moisture content, bulk density, soil resistance to cone penetration (referred to as cone index, or CI), and the dimensionless nominal soil cone index (NCI) defined by the ratio of CI over wheel foot print pressure. With STRAM, rut depth is inferred from: 1) machine dimensions pertaining to estimating foot print area and pressure;2) pore-filled soil moisture content and related CI projections guided by year-round daily weather records using the Forest Hydrology Model (ForHyM);3) accounting for within-block soil property variations using multiple and Random Forest regression techniques. Subsequent evaluations of projected soil moisture, CI and rut-depth values accounted for about 40 (multiple regression) and 80 (Random Forest) percent of the corresponding field measured values.
基金supported by the National Key Research and Development Program of China No.2023YFA1009500.
文摘With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.
文摘Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
文摘With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.
文摘The aim of this study is to determine the level to which the public is aware about ITS(intelligent transportation systems)technologies and how they perceive the potential advantages and inhibitors of ITS in Michigan.A survey was performed with 200 participants living in Michigan,in urban,suburban and rural areas.Questions covered in the survey included how often and how bad traffic congestion occurred,how familiar travelers were with ITS technologies(adaptive traffic signals,real time monitoring of the traffic)and how much support travelers would provide for ITS initiatives.Results reveal that there is a high degree of traffic congestion awareness,there is low public awareness of ITS technologies.While respondents who were aware of ITS solutions had positive views about deploying them,especially in urban areas,they were less supportive of ITS solutions than they were among those who did not know much about these.Factors including area of residence,commute time and age were perceived to influence ITS along with more positive attitudes to ITS amongst urban dwellers and younger respondents.Analysis of key barriers to ITS implementation reflected high initial costs,challenges with technical integration and users’concerns surrounding privacy.
文摘This paper comprehensively analyzes the evolution of traffic light systems in Shanghai,highlighting the technological advancements and their impact on traffic management and safety.Starting from the historical context of the first traffic light in London in 1868 to the modern automated systems,the study explores the complexity and adaptability of traffic lights in Shanghai.Through field surveys and interviews with traffic engineers,the paper debunks common misconceptions about traffic light operation,revealing a sophisticated network that responds to real-time traffic dynamics using software like the Sydney Coordinated Adaptive Traffic System(SCATS)6.The study also discusses the importance of pedestrian safety,suggesting future enhancements such as Global Positioning System(GPS)based emergency systems and accommodations for color-blind individuals.The paper further delves into the potential of Artificial Intelligence(AI)and Vehicle-to-Infrastructure(V21)technology in revolutionizing traffic light systems,emphasizing their role in improving traffic flow and safety.The findings underscore Shanghai’s progressive approach to traffic management,showcasing the city’s commitment to optimizing traffic control solutions for the benefit of both vehicles and pedestrians.
基金supported by the Science and Technology Project of State Grid Corporation of China under grant 52094021N010(5400-202199534A-0-5-ZN)。
文摘Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.
基金supported by National Natural Science Foundation of China(62473341)Key Technologies R&D Program of Henan Province(242102211071,252102211086,252102210166).
文摘Network traffic classification is a crucial research area aimed at improving quality of service,simplifying network management,and enhancing network security.To address the growing complexity of cryptography,researchers have proposed various machine learning and deep learning approaches to tackle this challenge.However,existing mainstream methods face several general issues.On one hand,the widely used Transformer architecture exhibits high computational complexity,which negatively impacts its efficiency.On the other hand,traditional methods are often unreliable in traffic representation,frequently losing important byte information while retaining unnecessary biases.To address these problems,this paper introduces the Swin Transformer architecture into the domain of network traffic classification and proposes the NetST(Network Swin Transformer)model.This model improves the Swin Transformer to better accommodate the characteristics of network traffic,effectively addressing efficiency issues.Furthermore,this paper presents a traffic representation scheme designed to extract meaningful information from large volumes of traffic while minimizing bias.We integrate four datasets relevant to network traffic classification for our experiments,and the results demonstrate that NetST achieves a high accuracy rate while maintaining low memory usage.
文摘1 Authorities in Montgomery Township,Pennsylvania,have introduced wavy lane patterns on some streets in an effort to slow down traffic in the area.2 Driving along Grays Lane in Montgomery Township for the first time must be challenging.Thats because the regular lane patterns have been replaced by wavy and zig⁃zag lines that look like they were painted by a drunk.But they are wavy by design.According to Montgomery Township officials,the unusual patterns were thought as the best solution to discouraging speeding on some of the streets.Police sources told local media outlets that the“traffic⁃calming measures”were installed in response to numerous complaints about certain streets being used as“speedways”.
文摘Accurate traffic flow prediction(TFP)is vital for efficient and sustainable transportation management and the development of intelligent traffic systems.However,missing data in real-world traffic datasets poses a significant challenge to maintaining prediction precision.This study introduces REPTF-TMDI,a novel method that combines a Reduced Error Pruning Tree Forest(REPTree Forest)with a newly proposed Time-based Missing Data Imputation(TMDI)approach.The REP Tree Forest,an ensemble learning approach,is tailored for time-related traffic data to enhance predictive accuracy and support the evolution of sustainable urbanmobility solutions.Meanwhile,the TMDI approach exploits temporal patterns to estimate missing values reliably whenever empty fields are encountered.The proposed method was evaluated using hourly traffic flow data from a major U.S.roadway spanning 2012-2018,incorporating temporal features(e.g.,hour,day,month,year,weekday),holiday indicator,and weather conditions(temperature,rain,snow,and cloud coverage).Experimental results demonstrated that the REPTF-TMDI method outperformed conventional imputation techniques across various missing data ratios by achieving an average 11.76%improvement in terms of correlation coefficient(R).Furthermore,REPTree Forest achieved improvements of 68.62%in RMSE and 70.52%in MAE compared to existing state-of-the-art models.These findings highlight the method’s ability to significantly boost traffic flow prediction accuracy,even in the presence of missing data,thereby contributing to the broader objectives of sustainable urban transportation systems.
文摘1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme.
文摘The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable challenge to cybersecurity. Traditional machine learning and deep learning techniques often fall short in identifying encrypted malicious traffic due to their inability to fully extract and utilize the implicit relational and positional information embedded within data packets. This limitation has led to an unresolved challenge in the cybersecurity community: how to effectively extract valuable insights from the complex patterns of traffic packet transmission. Consequently, this paper introduces the TB-Graph model, an encrypted malicious traffic classification model based on a relational graph attention network. The model is a heterogeneous traffic burst graph that embeds side-channel features, which are unaffected by encryption, into the graph nodes and connects them with three different types of burst edges. Subsequently, we design a relational positional coding that prevents the loss of temporal relationships between the original traffic flows during graph transformation. Ultimately, TB-Graph leverages the powerful graph representation learning capabilities of Relational Graph Attention Network (RGAT) to extract latent behavioral features from the burst graph nodes and edge relationships. Experimental results show that TB-Graph outperforms various state-of-the-art methods in fine-grained encrypted malicious traffic classification tasks on two public datasets, indicating its enhanced capability for identifying encrypted malicious traffic.
基金supported by the National Natural Science Foundation of China(Grant Nos.62472149,62376089,62202147)Hubei Provincial Science and Technology Plan Project(2023BCB04100).
文摘Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.
基金supported by the National Natural Science Foundation of China(No.62066041).
文摘Convolutional neural networks(CNNs)exhibit superior performance in image feature extraction,making them extensively used in the area of traffic sign recognition.However,the design of existing traffic sign recognition algorithms often relies on expert knowledge to enhance the image feature extraction networks,necessitating image preprocessing and model parameter tuning.This increases the complexity of the model design process.This study introduces an evolutionary neural architecture search(ENAS)algorithm for the automatic design of neural network models tailored for traffic sign recognition.By integrating the construction parameters of residual network(ResNet)into evolutionary algorithms(EAs),we automatically generate lightweight networks for traffic sign recognition,utilizing blocks as the fundamental building units.Experimental evaluations on the German traffic sign recognition benchmark(GTSRB)dataset reveal that the algorithm attains a recognition accuracy of 99.32%,with a mere 2.8×10^(6)parameters.Experimental results comparing the proposed method with other traffic sign recognition algorithms demonstrate that the method can more efficiently discover neural network architectures,significantly reducing the number of network parameters while maintaining recognition accuracy.
基金supported through Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R508)Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe research team thanks the Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama’a program,with the project code NU/GP/SERC/13/18-5.
文摘Unmanned Aerial Vehicles(UAVs)are increasingly employed in traffic surveillance,urban planning,and infrastructure monitoring due to their cost-effectiveness,flexibility,and high-resolution imaging.However,vehicle detection and classification in aerial imagery remain challenging due to scale variations from fluctuating UAV altitudes,frequent occlusions in dense traffic,and environmental noise,such as shadows and lighting inconsistencies.Traditional methods,including sliding-window searches and shallow learning techniques,struggle with computational inefficiency and robustness under dynamic conditions.To address these limitations,this study proposes a six-stage hierarchical framework integrating radiometric calibration,deep learning,and classical feature engineering.The workflow begins with radiometric calibration to normalize pixel intensities and mitigate sensor noise,followed by Conditional Random Field(CRF)segmentation to isolate vehicles.YOLOv9,equipped with a bi-directional feature pyramid network(BiFPN),ensures precise multi-scale object detection.Hybrid feature extraction employs Maximally Stable Extremal Regions(MSER)for stable contour detection,Binary Robust Independent Elementary Features(BRIEF)for texture encoding,and Affine-SIFT(ASIFT)for viewpoint invariance.Quadratic Discriminant Analysis(QDA)enhances feature discrimination,while a Probabilistic Neural Network(PNN)performs Bayesian probability-based classification.Tested on the Roundabout Aerial Imagery(15,474 images,985K instances)and AU-AIR(32,823 instances,7 classes)datasets,the model achieves state-of-the-art accuracy of 95.54%and 94.14%,respectively.Its superior performance in detecting small-scale vehicles and resolving occlusions highlights its potential for intelligent traffic systems.Future work will extend testing to nighttime and adverse weather conditions while optimizing real-time UAV inference.
基金supported by the National Key R&D Program of China (2021YFB2700200)the National Natural Science Foundation of China (U21B2021,61932014,61972018,62202027)+2 种基金Young Elite Scientists Sponsorship Program by CAST (2022QNRC001)Beijing Natural Science Foundation (M23016)Yunnan Key Laboratory of Blockchain Application Technology Open Project (202105AG070005,YNB202206)。
文摘Metaverse is a new emerging concept building up a virtual environment for the user using Virtual Reality(VR)and blockchain technology but introduces privacy risks.Now,a series of challenges arise in Metaverse security,including massive data traffic breaches,large-scale user tracking,analysis activities,unreliable Artificial Intelligence(AI)analysis results,and social engineering security for people.In this work,we concentrate on Decentraland and Sandbox,two well-known Metaverse applications in Web 3.0.Our experiments analyze,for the first time,the personal privacy data exposed by Metaverse applications and services from a combined perspective of network traffic and privacy policy.We develop a lightweight traffic processing approach suitable for the Web 3.0 environment,which does not rely on complex decryption or reverse engineering techniques.We propose a smart contract interaction traffic analysis method capable of retrieving user interactions with Metaverse applications and blockchain smart contracts.This method provides a new approach to de-anonymizing users'identities through Metaverse applications.Our system,METAseen,analyzes and compares network traffic with the privacy policies of Metaverse applications to identify controversial data collection practices.The consistency check experiment reveals that the data types exposed by Metaverse applications include Personal Identifiable Information(PII),device information,and Metaverse-related data.By comparing the data flows observed in the network traffic with assertions made in the privacy regulations of the Metaverse service provider,we discovered that far more than 49%of the Metaverse data flows needed to be disclosed appropriately.