A series of green phosphorescent organic light-emitting diodes based on bipolar-transporting material 4,4Lbis- (carbazol-9-yl) biphenyl (CBP) are prepared. We insert a mixed host emitting interlayer (CBPx: elect...A series of green phosphorescent organic light-emitting diodes based on bipolar-transporting material 4,4Lbis- (carbazol-9-yl) biphenyl (CBP) are prepared. We insert a mixed host emitting interlayer (CBPx: electron- transporting material 1,3,&tris (N-phenylbenzimidazole-2yl) (TPBi)1-X) in the middle of the emitting layer, and the best performance appears when x is 2/3. The position of this interlayer can also affect the performanee of phosphorescent organic light-emitting diodes. When this interlayer is close to the side of the electron transporting layer, the maximum value of luminance, the current efficiency and the power efficiency are 34090cd/m2 at 12 V, 60. 6 cd/A and 56.6 lm/W, respectively.展开更多
Nowadays,OLEDs have shown aesthetic potential in smart cards,sensor displays,other electronic devices,sensitive medical devices and signal monitoring etc.due to their wide range of applications like low power consumpt...Nowadays,OLEDs have shown aesthetic potential in smart cards,sensor displays,other electronic devices,sensitive medical devices and signal monitoring etc.due to their wide range of applications like low power consumption,high contrast ratio,speed highly electroluminescent,wide viewing angle and fast response time.In this paper,a highly efficient organic LED ITO/V_(2)O_(5)/Alq3/TPBi/BPhen/LiF/Al with low turn-on voltage and high optically efficiency is presented including electrical and optical characteristics.The simulation of electrical characteristics like current versus applied voltage,current density versus applied voltage,recombination prefactor versus excess carrier density characteristics and optical characteristics like light flux versus current density,light flux versus applied voltage and optical efficiency versus applied voltage has been explained.The physical design,working principle and thickness of different layers along with the process of formation of singlet and triplet excitons are discussed in detail.Here double electron transport layer(ETL),cathode layers are used to enhance the electrical and optical efficiency of OLED.The operating voltage is found to be~3.2 V for the ITO/V_(2)O_(5)/Alq3/TPBi/BPhen/LiF/Al heterostructure based OLED.The designed organic LED has achieved the maximum optical efficiency at 3 V.展开更多
采用密度泛函理论研究锂离子电池正极成膜添加剂硼酸三异丙酯(TPBi)的作用机理。通过充电微分曲线和交流阻抗谱,研究TPBi用作电解液添加剂的电化学行为;采用XRD、SEM和透射电镜测试,分析层状富锂正极材料的晶相结构和表面形貌;使用电感...采用密度泛函理论研究锂离子电池正极成膜添加剂硼酸三异丙酯(TPBi)的作用机理。通过充电微分曲线和交流阻抗谱,研究TPBi用作电解液添加剂的电化学行为;采用XRD、SEM和透射电镜测试,分析层状富锂正极材料的晶相结构和表面形貌;使用电感耦合等离子体发射光谱,对锂片表面进行分析。TPBi能优先于电解液在层状富锂正极材料表面氧化,形成保护膜,抑制电解液的分解,减少过渡金属离子的溶出,改善正极材料的循环性能和倍率性能。2%TPBi用作添加剂在2.0~4.8 V充放电,层状富锂正极材料以0.5 C循环190次,容量保持率从未添加的26%提升到90%,4.0 C放电比容量从未添加的96 m Ah/g提升到136 m Ah/g;石墨负极材料以0.5 C循环200次,容量保持率从未添加的22%提高到83%。展开更多
文摘A series of green phosphorescent organic light-emitting diodes based on bipolar-transporting material 4,4Lbis- (carbazol-9-yl) biphenyl (CBP) are prepared. We insert a mixed host emitting interlayer (CBPx: electron- transporting material 1,3,&tris (N-phenylbenzimidazole-2yl) (TPBi)1-X) in the middle of the emitting layer, and the best performance appears when x is 2/3. The position of this interlayer can also affect the performanee of phosphorescent organic light-emitting diodes. When this interlayer is close to the side of the electron transporting layer, the maximum value of luminance, the current efficiency and the power efficiency are 34090cd/m2 at 12 V, 60. 6 cd/A and 56.6 lm/W, respectively.
文摘Nowadays,OLEDs have shown aesthetic potential in smart cards,sensor displays,other electronic devices,sensitive medical devices and signal monitoring etc.due to their wide range of applications like low power consumption,high contrast ratio,speed highly electroluminescent,wide viewing angle and fast response time.In this paper,a highly efficient organic LED ITO/V_(2)O_(5)/Alq3/TPBi/BPhen/LiF/Al with low turn-on voltage and high optically efficiency is presented including electrical and optical characteristics.The simulation of electrical characteristics like current versus applied voltage,current density versus applied voltage,recombination prefactor versus excess carrier density characteristics and optical characteristics like light flux versus current density,light flux versus applied voltage and optical efficiency versus applied voltage has been explained.The physical design,working principle and thickness of different layers along with the process of formation of singlet and triplet excitons are discussed in detail.Here double electron transport layer(ETL),cathode layers are used to enhance the electrical and optical efficiency of OLED.The operating voltage is found to be~3.2 V for the ITO/V_(2)O_(5)/Alq3/TPBi/BPhen/LiF/Al heterostructure based OLED.The designed organic LED has achieved the maximum optical efficiency at 3 V.
文摘采用密度泛函理论研究锂离子电池正极成膜添加剂硼酸三异丙酯(TPBi)的作用机理。通过充电微分曲线和交流阻抗谱,研究TPBi用作电解液添加剂的电化学行为;采用XRD、SEM和透射电镜测试,分析层状富锂正极材料的晶相结构和表面形貌;使用电感耦合等离子体发射光谱,对锂片表面进行分析。TPBi能优先于电解液在层状富锂正极材料表面氧化,形成保护膜,抑制电解液的分解,减少过渡金属离子的溶出,改善正极材料的循环性能和倍率性能。2%TPBi用作添加剂在2.0~4.8 V充放电,层状富锂正极材料以0.5 C循环190次,容量保持率从未添加的26%提升到90%,4.0 C放电比容量从未添加的96 m Ah/g提升到136 m Ah/g;石墨负极材料以0.5 C循环200次,容量保持率从未添加的22%提高到83%。