In the present study,we investigated the influence of surface fluorine(F)on TiO_(2)for the photocatalytic oxidation(PCO)of toluene.TiO_(2)modified with different F content was prepared and tested.It was found that wit...In the present study,we investigated the influence of surface fluorine(F)on TiO_(2)for the photocatalytic oxidation(PCO)of toluene.TiO_(2)modified with different F content was prepared and tested.It was found that with the increasing of F content,the toluene conversion rate first increased and then decreased.However,CO_(2)mineralization efficiency showed the opposite trend.Based on the characterizations,we revealed that F substitutes the surface hydroxyl of TiO_(2)to form the structure of≡Ti-F.The presence of the appropriate amount of surface≡Ti-F on TiO_(2)greatly enhanced the separation of photogenerated carriers,which facilitated the generation of·OH and promoted the activity for the PCO of toluene.It was further revealed that the increase of only·OH promoted the conversion of toluene to ring-containing intermediates,causing the accumulation of intermediates and then conversely inhibited the·OH generation,which led to the decrease of the CO_(2)mineralization efficiency.The above results could provide guidance for the rational design of photocatalysts for toluene oxidation.展开更多
Selective synthesis of value-added xylenes and para-xylene(PX)by CO_(2)hydrogenation reduces the dependence on fossil resource and relieves the environment burden derived from the greenhouse gas CO_(2).Herein,modified...Selective synthesis of value-added xylenes and para-xylene(PX)by CO_(2)hydrogenation reduces the dependence on fossil resource and relieves the environment burden derived from the greenhouse gas CO_(2).Herein,modified MCM-22 zeolite combined with ZnCeZrOx solid solution is reported to catalyze the tandem CO_(2)hydrogenation and toluene methylation reaction at a relatively low temperature(<603 K),showing xylene selectivity of 92.4%and PX selectivity of 62%(PX/X,67%)in total aromatics at a CO_(2)conversion of 7.7%,toluene conversion of 23.6%and low CO selectivity of 11.6%,as well as giving high STY of xylene(302.0 mg·h^(–1)·gcat^(–1))and PX(201.6 mg·h^(–1)·gcat^(–1)).The outstanding catalytic performances are closely related to decreased pore sizes and eliminated external surface acid sites in modified MCM-22,which promoted zeolite shape-selectivity and suppressed secondary reactions.展开更多
Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully...Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully synthesized via the sol–gel method and tested for their catalytic performance for simultaneous degradation of benzene and toluene.The CuMn_(2)O_(4)sample exhibited the best catalytic performance,the conversion of benzene reached 100%at 350℃,and toluene conversion reached 100%at 250℃.XRD,N_(2)adsorption-desorption,HRTEM-EDS,ED-XRF,Raman spectroscopy,H_(2)-TPR,NH_(3)-TPD,O_(2)-TPD and XPS were used to characterize the physical and chemical properties of MMn_(2)O_(4)catalysts.The excellent redox properties,high concentration of surface Mn4+,and adsorption of oxygen species over the CuMn_(2)O_(4)sample facilitated the simultaneous and efficient removal of benzene and toluene.Additionally,in situ DRIFTS illustrated the intermediate species and reaction mechanism for the synergetic catalytic oxidation of benzene and toluene.Notably,as an effective catalytic material,spinel oxide exhibited excellent synergistic degradation performance for benzene and toluene,providing some insight for the development of efficient multicomponent VOC catalysts.展开更多
Toluene is widely used as a raw material for many chemical products/pharmaceutical intermediates and as a solvent in many chemical and manufacturing industries.The conversion of toluene into higher value chemicals(ben...Toluene is widely used as a raw material for many chemical products/pharmaceutical intermediates and as a solvent in many chemical and manufacturing industries.The conversion of toluene into higher value chemicals(benzyl alcohol,benzaldehyde,and benzoic acid,etc.)using sunlight is a very promising means.To achieve the full conversion and utilization of toluene,it is necessary to construct photocatalysts with high conversion and selectivity while synergistically optimizing the optimal reaction environment to significantly affect the photo-conversion of toluene.High-performance photocatalysts not only widely absorb sunlight,but also have abundant active sites and generation of free radicals,which can promote the chemical bonds cleavage of toluene,thus greatly increasing the yield of higher-valued products.In addition,the type of photocatalyst and the modification strategy would influence the selectivity of toluene photo-conversion.Therefore,it makes sense that this review presents the reaction mechanism and the influence of reaction factors for the(mainly)photo-oxidation of toluene,a thorough analysis and prediction of the reaction mechanism by theoretical calculations,and the toluene oxidation by different photocatalysts(in particular halogen-containing perovskite materials)to yield specific products,as well as photocatalysts’modifications.Finally,the challenges and prospects for designing efficient photocatalysts and optimizing the toluene oxidation reaction process are summarized.展开更多
Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the cha...Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the characteristic values,the carbon tetrachloride(CTC)adsorption value has demonstrated relatively stronger correlation with the toluene adsorption capacity on AC sampleswith diverse sources and forms,particularly in exposure to high-concentration toluene.Notably,the relevance of the toluene adsorption capacity to the CTC value could also be extended to a series of other porous adsorbents,which proved the wide applicability of CTC value in characterizing the adsorption behaviors.Based on these results,a mathematical and visual model was then established to predict the toluene adsorption saturation under different conditions(inlet concentration,adsorption time,initial CTC value,etc.)on diverse AC samples,of which the accuracy has later been verified by experimental data.As such,a fast and accurate estimation of the adsorption behaviors over AC samples,and possibly other porous adsorbents,was realized.展开更多
Themanganese-cobalt mixed oxide nanorodswere fabricated using a hydrothermalmethod with different metal precursors(KMnO_(4)and MnSO_(4)·H_(2)O for MnOx and Co(NO3)2>6H_(2)O and CoCl_(2)>6H_(2)O for Co_(3)O_...Themanganese-cobalt mixed oxide nanorodswere fabricated using a hydrothermalmethod with different metal precursors(KMnO_(4)and MnSO_(4)·H_(2)O for MnOx and Co(NO3)2>6H_(2)O and CoCl_(2)>6H_(2)O for Co_(3)O_(4)).Bamboo-like MnO_(2)>Co_(3)O_(4)(B-MnO_(2)>Co_(3)O_(4)(S))was derived from repeated hydrothermal treatments with Co_(3)O_(4)@MnO_(2)and MnSO_(4)>H_(2)O,whereas Co_(3)O_(4)@MnO_(2)nanorods were derived from hydrothermal treatment with Co_(3)O_(4)nanorods and KMnO_(4).The study shows that manganese oxide was tetragonal,while the cobalt oxide was found to be cubic in the crystalline arrangement.Mn surface ions were present in multiple oxidation states(e.g.,Mn^(4+)and Mn^(3+))and surface oxygen deficiencies.The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of BMnO_(2)>Co_(3)O_(4)(S)>Co_(3)O_(4)@MnO_(2)>MnO_(2)>Co_(3)O_(4),matching the changing trend in activity.Among all the samples,B-MnO_(2)>Co_(3)O_(4)(S)showed the preeminent catalytic performance for the oxidation of toluene(T10%=187℃,T50%=276℃,and T90%=339℃).In addition,the B-MnO_(2)>Co_(3)O_(4)(S)sample also exhibited good H_(2)O^(-),CO_(2)^(-),and SO_(2)^(-)resistant performance.The good catalytic performance of B-MnO_(2)>Co_(3)O_(4)(S)is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature.Toluene oxidation over B-MnO_(2)>Co_(3)O_(4)(S)proceeds through the adsorption of O_(2)and toluene to form O∗,OH∗,and H_(2)C(C6H5)∗species,which then react to produce benzyl alcohol,benzoic acid,and benzaldehyde,ultimately converting to CO_(2)and H_(2)O.The findings suggest that B-MnO_(2)>Co_(3)O_(4)(S)has promising potential for use as an effective catalyst in practical applications.展开更多
Herein,three supported catalysts,CuO/Al_(2)O_(3),CeO_(2)/Al_(2)O_(3),and CuO-CeO_(2)/Al_(2)O_(3),were synthesized by the convenient impregnation method to reveal the effect of CeO_(2)addition on catalytic performance ...Herein,three supported catalysts,CuO/Al_(2)O_(3),CeO_(2)/Al_(2)O_(3),and CuO-CeO_(2)/Al_(2)O_(3),were synthesized by the convenient impregnation method to reveal the effect of CeO_(2)addition on catalytic performance and reaction mechanism for toluene oxidation.Compared with CuO/Al_(2)O_(3),the T_(50)and T_(90)(the temperatures at 50%and 90%toluene conversion,respectively)of CuO-CeO_(2)/Al_(2)O_(3)were reduced by 33 and 39°C,respectively.N_(2)adsorptiondesorption experiment,XRD,SEM,EDS mapping,Raman,EPR,H_(2)-TPR,O_(2)-TPD,XPS,NH_(3)-TPD,Toluene-TPD,and in-situ DRIFTS were conducted to characterize these catalysts.The excellent catalytic performance of CuO-CeO_(2)/Al_(2)O_(3)could be attributed to its strong coppercerium interaction and high oxygen vacancies concentration.Moreover,in-situ DRIFTS proved that CuO-CeO_(2)/Al_(2)O_(3)promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene.This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.展开更多
In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,...In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,BET,XPS and H_(2)-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg^(0) removal efficiency at 200℃.By varying the experimental gas components and conditions,it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg^(0).Although O_(2) promoted the abatement of toluene and Hg^(0),the inhibitory role of H_(2)O and SO_(2) offset the promoting effect of O_(2) to some extent.Toluene significantly inhibited Hg^(0) removal,resulting from that toluene was present at concentrations orders of magnitude greater than mercury’s or the catalyst was more prone to adsorb toluene,while Hg^(0) almost exerted non-existent influence on toluene elimination.The mechanistic analysis showed that the forms of toluene and Hg^(0) removal included both adsorption and oxidation,where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr^(3+)+Mn^(3+)/Mn^(4+)+Cr^(6+)+Mn^(2+),which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process,and even the CrMn_(1.5)O_(4) spinel structure could provide a larger catalytic interface,thus enhancing the adsorption/oxidation of toluene and Hg^(0).Therefore,its excellent physicochemical properties make it a costeffective potential industrial catalyst with outstanding synergistic toluene and Hg^(0) removal performance and preeminent resistance to H_(2)O and SO_(2).展开更多
This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is fou...This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is found that the toluene complete conversion over Pd/7.5Ce-beta zeolite occurs at 190℃,with a minimal increase of 20℃even after sulfur poisoning.It is shown that Ce-doping markedly enhances sulfur tolerance besides catalytic activity.The underlying mechanism involves CeO_(2)sites capturing sulfur species,thus safeguarding active Pd species from sulfur poisoning.It can be observed that Pd0active sites,which are crucial in the catalytic high activity,are still present in the most severely poisoned catalyst.Furthermore,Ce-modified catalyst exhibits a more stable pore structure and increased acid strength after sulfur poisoning,all of which are beneficial to improving the sulfur tolerance.Consequently,Pd/Ce-beta zeolite is a promising solution for processing sulfur-containing volatile organic compounds,offering valuable insights for developing effective and sustainable catalysts for environmental remediation.展开更多
Degrading volatile organic compounds at low temperatures and active sites aggregation are still challenging.In this study,a novel mesoporous zeolite silicalite-1(S-1–meso)enveloped Pt–Ni bimetallic catalysts(noted a...Degrading volatile organic compounds at low temperatures and active sites aggregation are still challenging.In this study,a novel mesoporous zeolite silicalite-1(S-1–meso)enveloped Pt–Ni bimetallic catalysts(noted as Pt1Ni1@S-1–meso)were synthesized via a facile in situ mesoporous template-free method.The Pt–Ni bimetallic nanoparticles were uniformly distributed and displayed a large specific surface area and enriched mesopores to facilitate the deep oxidation of toluene.The presence of the Pt–Ni O interface both increased the dispersion of the catalyst and improved its catalytic performance,thereby reducing the consumption of Pt.The Mars-van Krevelen mechanism and density function theory(DFT)calculations revealed that the Pt–Ni O interface effect changed the electronic structure of Pt and Ni species,reduced the activation potential for oxygen,formed reactive oxygen species,and facilitated the adsorption and activation of reactants in the direction favorable to the toluene oxidation.This study provides a guideline for minimizing the proportion of precious metals used in practical applications and a promising method for toluene elimination at low temperatures.展开更多
Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is...Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is particularly significant in challenging coupled systems,such as CO_(2)photoreduction integrated with selective oxidation of toluene to benzaldehyde.However,developing such a system is quite challenging and often requires a precise design and engineering.Herein,we demonstrate a unique Ni-CdS@Ni(OH)_(2)heterojunction synthesized via an in-situ self-assembly method.Comprehensive mechanistic and theoretical investigations reveal that the NiCdS@Ni(OH)_(2)heterojunction induces dual electric fields(EFs):an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)_(2)on NiCdS nanorods,enabling efficient spatial charge separation and enhanced redox potential.As proof of concept,the Ni-CdS@Ni(OH)_(2)heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance,producing CO at a rate of 427μmol g^(-1)h^(-1)and selectively oxidizing toluene to benzaldehyde at a rate of 1476μmol g^(-1)h^(-1)with a selectivity exceeding 85%.This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts,advancing synergistic photocatalytic redox systems.展开更多
Creating a new low-temperature catalyst in decreasing the emission of volatile organic compounds(VOCs)has great significance under different industrial production situations.In particular,the Zr-UiO-66 is optimized by...Creating a new low-temperature catalyst in decreasing the emission of volatile organic compounds(VOCs)has great significance under different industrial production situations.In particular,the Zr-UiO-66 is optimized by different amounts of cerium,which not only enhances the physicochemical stability but also increases the number of active sites of Ce_(x)Zr_(y)UiO-66.Furthermore,the catalysts with Co_(3)O_(4)nanoparticles supported on Ce_(x)Zr_(y)UiO-66 were successfully prepared via impregnation method.In the process of toluene degradation,the Co/Ce_(1)Zr_(2)-Ui0-66 attains a 90%conversion rate at 210℃with a space velocity of 60000 mL/(g·h)and toluene concentration at 1000×10^(-6).Meanwhile,the carbon dioxide selectivity reaches 100%at 218℃.The Co/Ce_(1)Zr_(2)-UiO-66 shows great water resistance(3 vol%H_(2)O).Multiple characterization methods were used to figure out the physicochemical properties of the catalysts.It is found that the addition of an appropriate amount of cerium can enhance stability of UiO-66 and surface lattice oxygen proportion.Additionally,the stronger electron transfer between Ce^(4+)and Co^(2+)enables the Co/Ce_(1)Zr_(2)-UiO-66 to possess more active surface oxygen species and Co_(3)+cationic species in all samples.展开更多
Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and ...Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and high rate-determining step energy barrier for difficult to dehydrogenate.Herein,we report Mn_(x)Ce_(1-x)O_(2)/CNT catalyst for accelerated reaction kinetics.Theoretical and experimental studies indicate that Ce sites promote TL adsorption and polyvalent Mn modulates the electronic structure of Ce sites reducing the rate-determining step energy barrier.This results in increasing^(*)C_(6)H_(5)CH_(2)coverage and effectively accelerating TL oxidation reaction(TOR)kinetics.Excitingly,the Faraday efficiency(FE)and BAC yield of optimized Mn_(0.6)Ce_(0.4)O_(2)/CNT at 2.6 V vs.RHE could reach 85.9%and 653.9 mg h^(-1)cm^(-2),respectively.In addition,the Mn_(0.6)Ce_(0.4)O_(2)/CNT displays a high selectivity of 96.3%for BAC.Combining the TL oxidation reaction with hydrogen evolution reaction,the anion exchange membrane electrolyzer of Mn_(0.6)Ce_(0.4)O_(2)/CNT(+)||Pt/C(-)can reach 100 mA cm^(-2)at the voltage of 3.0 V,in which the BAC yield is 579.4 mg h^(-1)cm^(-2)and the FE is 83.6%.This work achieved high selectivity of TOR at industrial-relevant current densities of 100 mA cm^(-2)at the low voltage for the first time.展开更多
The binding energy spectra and electron momentum distributions(EMDs)of valence orbitals in toluene molecule were measured by(e,2e)electron momentum spectrometer.A comprehensive analysis of molecular vibrational effect...The binding energy spectra and electron momentum distributions(EMDs)of valence orbitals in toluene molecule were measured by(e,2e)electron momentum spectrometer.A comprehensive analysis of molecular vibrational effects on the EMDs was conducted through harmonic analytical quantum mechanical approach calculations and molecular dynamics simulations within the plane wave impulse approximation(PWIA).Furthermore,the multicenter three-distorted-wave method was employed to investigate the validity of the PWIA.A comparison between experimental measurements and theoretical predictions demonstrates that molecular vibrations have negligible effects on the EMDs,whereas the distorted-wave effects are obvious,particularly in large momentum regions.展开更多
Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surf...Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance.展开更多
Three-dimensionally ordered macro-/mesoporous alumina(3DOM Al2O3)-supported cobalt oxide and platinum nanocatalysts(xPt/yCo3O4/3DOM Al2O3,Pt mass fraction(x%)= 0-1.4%,Co3O4 mass fraction(y%) = 0-9.2%) were pre...Three-dimensionally ordered macro-/mesoporous alumina(3DOM Al2O3)-supported cobalt oxide and platinum nanocatalysts(xPt/yCo3O4/3DOM Al2O3,Pt mass fraction(x%)= 0-1.4%,Co3O4 mass fraction(y%) = 0-9.2%) were prepared using poly(methyl methacrylate) templating,incipient wetness impregnation and polyvinyl alcohol-protected reduction.The resulting xPt/yCo3O4/3DOM Al2O3 samples displayed a high-quality 3DOM architecture with macropores(180-200 nm in diameter) and mesopores(4-6 nm in diameter) together with surface areas in the range of 94 to 102m^2/g.Using these techniques,Co3O4 nanoparticles(NPs,18.3 nm) were loaded on the 3DOM Al2O3 surface,after which Pt NPs(2.3-2.5 nm) were uniformly dispersed on theyCo3O4/3DOM Al2O3.The1.3Pt/8.9Co3O4/3DOM Al2O3 exhibited the best performance for toluene oxidation,with a T(90%) value(the temperature required to achieve 90%toluene conversion) of 160 ℃ at a space velocity of20000 mL g^(-1) h^(-1).It is concluded that the excellent catalytic performance of the 1.3Pt/8.9Co3O4/3DOM Al2O3 is owing to well-dispersed Pt NPs,the high concentration of adsorbed oxygen species,good low-temperature reducibility,and strong interaction between the Pt and Co3O4 NPs,as well as the unique bimodal porous structure of the support.展开更多
Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The...Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The correlations between traffic flows and totals of benzene and toluene were studied during the period of vehicular traffic restrictions from August 17 to August 20 and non-traffic restrictions on August 16 and August 21. The correlation coef- ficient was 0.8 between benzene and toluene. And the calculated daily mean value ratios of benzene to toluene were 0.43-0.50. During the period of vehicular restrictions, traffic flows were reduced about 11.8% and the levels of benzene and toluene were reduced by 11.4% and 12.8%, respectively. The vehicle emissions were recognized as the major sources for atmospheric benzene and toluene in Beijing.展开更多
The composition of products formed from photooxidation of the aromatic hydrocarbon toluene was investigated. The OH-initiated photooxidation experiments were conducted by irradiating toluene/CH3ONO/NO/air mixtures in ...The composition of products formed from photooxidation of the aromatic hydrocarbon toluene was investigated. The OH-initiated photooxidation experiments were conducted by irradiating toluene/CH3ONO/NO/air mixtures in a smog chamber, the gaseous products were detected under the supersonic beam conditions by utilizing vacuum ultraviolet photoionization mass spectrometer using synchrotron radiation in real-time. And an aerosol time-of-flight mass spectrometer was used to provide on-line measurements of the individual secondary organic aerosol particle resulting from irradiating toluene. The experimental results demonstrated that there were some differences between the gaseous products and that of particle-phase, the products of glyoxal, 2-hydroxyl-3-oxo-butanal, nitrotoluene, and methyl-nitrophenol only existed in the particle-phase. However, furane, methylglyoxal, 2-methylfurane, benzaldehyde, cresol, and benzoic acid were the predominant photooxidation products in both the gas phase and particle phase.展开更多
For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups,...For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups, was synthesized and characterized by the Fourier transform infrared (FFIR), the gel permeation chromatography (GPC) and the chemical analysis methods. The reaction conditions were studied and optimized. A tracking research on the polymerization process of TDI was taken by using the GPC. The formation processes of the terpolymer, oligomers and higher-polymers were also dealt with. Results show that the TDI terpolymer can be prepared in the presence of Cat-3 catalyst and at the reaction temperature of (60 ±2)℃. The reaction time is short, its outcomes have narrow molecular weights distribution, namely molecular weights from 530 to 550, Mw/Mn =1.10, and the mass fraction of NCO is (25. 0 ± 0. 5)%. With the reaction time prolonging, however, TDI can be further higher-polymedzed to form higher-polymers. Benzoyl chloride (0. 4%, mass fraction), as the stabilizing agent, can effectively inhibit the occurrence of higher-polymerization. The obtained TDI terpolymer can be stable for more than half a year.展开更多
The alkylation of toluene with 1,3-pentadiene to produce pentyltoluene was carded out to obtain 2,6-dimethylnaphalene, which is an important intermediate during the production of 2,6-naphthalene dicarboxylic acid. Bas...The alkylation of toluene with 1,3-pentadiene to produce pentyltoluene was carded out to obtain 2,6-dimethylnaphalene, which is an important intermediate during the production of 2,6-naphthalene dicarboxylic acid. Based on our previous work using anhydrous AlCl3 as catalyst, [bupy]BF4-AlCl3 ionic liquids were employed to catalyze the reaction of 1,3-pentadiene with toluene. The experimental results show that [bupy]BF4-AlCl3 ionic liquids are suitable for the reaction especially when the molar ratio of AlCl3 to [bupy]BF4 is 1.75 : 1, and the reaction could proceed at the temperature as low as 0℃. It could be as active as pure AlCl3, but much more environmentally friendly.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21976196,22276204).
文摘In the present study,we investigated the influence of surface fluorine(F)on TiO_(2)for the photocatalytic oxidation(PCO)of toluene.TiO_(2)modified with different F content was prepared and tested.It was found that with the increasing of F content,the toluene conversion rate first increased and then decreased.However,CO_(2)mineralization efficiency showed the opposite trend.Based on the characterizations,we revealed that F substitutes the surface hydroxyl of TiO_(2)to form the structure of≡Ti-F.The presence of the appropriate amount of surface≡Ti-F on TiO_(2)greatly enhanced the separation of photogenerated carriers,which facilitated the generation of·OH and promoted the activity for the PCO of toluene.It was further revealed that the increase of only·OH promoted the conversion of toluene to ring-containing intermediates,causing the accumulation of intermediates and then conversely inhibited the·OH generation,which led to the decrease of the CO_(2)mineralization efficiency.The above results could provide guidance for the rational design of photocatalysts for toluene oxidation.
文摘Selective synthesis of value-added xylenes and para-xylene(PX)by CO_(2)hydrogenation reduces the dependence on fossil resource and relieves the environment burden derived from the greenhouse gas CO_(2).Herein,modified MCM-22 zeolite combined with ZnCeZrOx solid solution is reported to catalyze the tandem CO_(2)hydrogenation and toluene methylation reaction at a relatively low temperature(<603 K),showing xylene selectivity of 92.4%and PX selectivity of 62%(PX/X,67%)in total aromatics at a CO_(2)conversion of 7.7%,toluene conversion of 23.6%and low CO selectivity of 11.6%,as well as giving high STY of xylene(302.0 mg·h^(–1)·gcat^(–1))and PX(201.6 mg·h^(–1)·gcat^(–1)).The outstanding catalytic performances are closely related to decreased pore sizes and eliminated external surface acid sites in modified MCM-22,which promoted zeolite shape-selectivity and suppressed secondary reactions.
基金supported by the National Natural Science Foundation of China(Nos.22206146,22006079,and U21A20524)the Fundamental Research Funds for the Central Universities,the Youth Innovation Promotion Association of Chinese Academy of Sciences,the Fundamental Research Program of Shanxi Province(No.202103021223280)+1 种基金the Special Fund for Science and Technology Innovation Teams of Shanxi Province(No.202204051002026)the Natural Science Foundation of Shandong Province(No.ZR2021QB133).
文摘Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully synthesized via the sol–gel method and tested for their catalytic performance for simultaneous degradation of benzene and toluene.The CuMn_(2)O_(4)sample exhibited the best catalytic performance,the conversion of benzene reached 100%at 350℃,and toluene conversion reached 100%at 250℃.XRD,N_(2)adsorption-desorption,HRTEM-EDS,ED-XRF,Raman spectroscopy,H_(2)-TPR,NH_(3)-TPD,O_(2)-TPD and XPS were used to characterize the physical and chemical properties of MMn_(2)O_(4)catalysts.The excellent redox properties,high concentration of surface Mn4+,and adsorption of oxygen species over the CuMn_(2)O_(4)sample facilitated the simultaneous and efficient removal of benzene and toluene.Additionally,in situ DRIFTS illustrated the intermediate species and reaction mechanism for the synergetic catalytic oxidation of benzene and toluene.Notably,as an effective catalytic material,spinel oxide exhibited excellent synergistic degradation performance for benzene and toluene,providing some insight for the development of efficient multicomponent VOC catalysts.
基金supported by the Natural Sciences and Engineering Research Council of Canada-Discovery Grant(Canada).
文摘Toluene is widely used as a raw material for many chemical products/pharmaceutical intermediates and as a solvent in many chemical and manufacturing industries.The conversion of toluene into higher value chemicals(benzyl alcohol,benzaldehyde,and benzoic acid,etc.)using sunlight is a very promising means.To achieve the full conversion and utilization of toluene,it is necessary to construct photocatalysts with high conversion and selectivity while synergistically optimizing the optimal reaction environment to significantly affect the photo-conversion of toluene.High-performance photocatalysts not only widely absorb sunlight,but also have abundant active sites and generation of free radicals,which can promote the chemical bonds cleavage of toluene,thus greatly increasing the yield of higher-valued products.In addition,the type of photocatalyst and the modification strategy would influence the selectivity of toluene photo-conversion.Therefore,it makes sense that this review presents the reaction mechanism and the influence of reaction factors for the(mainly)photo-oxidation of toluene,a thorough analysis and prediction of the reaction mechanism by theoretical calculations,and the toluene oxidation by different photocatalysts(in particular halogen-containing perovskite materials)to yield specific products,as well as photocatalysts’modifications.Finally,the challenges and prospects for designing efficient photocatalysts and optimizing the toluene oxidation reaction process are summarized.
基金supported by the Key Research and Development Projects in Zhejiang Province(Nos.2023C03127,2024C03114,2024C03108)the Natural Science Foundation of China(Nos.22208300,22078294)+2 种基金the Natural Science Foundation of Zhejiang Province(No.LQ23B060007)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.RF-A2023004)Zhejiang Provincial Postdoctoral Science Foundation(No.ZJ2023145).
文摘Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the characteristic values,the carbon tetrachloride(CTC)adsorption value has demonstrated relatively stronger correlation with the toluene adsorption capacity on AC sampleswith diverse sources and forms,particularly in exposure to high-concentration toluene.Notably,the relevance of the toluene adsorption capacity to the CTC value could also be extended to a series of other porous adsorbents,which proved the wide applicability of CTC value in characterizing the adsorption behaviors.Based on these results,a mathematical and visual model was then established to predict the toluene adsorption saturation under different conditions(inlet concentration,adsorption time,initial CTC value,etc.)on diverse AC samples,of which the accuracy has later been verified by experimental data.As such,a fast and accurate estimation of the adsorption behaviors over AC samples,and possibly other porous adsorbents,was realized.
基金supported by the National Natural Science Foundation Committee of China-Liaoning Provincial People’s Government Joint Fund(No.U1908204)the National Natural Science Foundation of China(Nos.21876006 and 21976009)+2 种基金the Natural Science Foundation of Beijing Municipal Commission of Education(No.KM201710005004)the Development Program for the Youth Outstanding-Notch Talent of Beijing Municipal Commission of Education(No.CIT&TCD201904019)the Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(No.IDHT20190503).
文摘Themanganese-cobalt mixed oxide nanorodswere fabricated using a hydrothermalmethod with different metal precursors(KMnO_(4)and MnSO_(4)·H_(2)O for MnOx and Co(NO3)2>6H_(2)O and CoCl_(2)>6H_(2)O for Co_(3)O_(4)).Bamboo-like MnO_(2)>Co_(3)O_(4)(B-MnO_(2)>Co_(3)O_(4)(S))was derived from repeated hydrothermal treatments with Co_(3)O_(4)@MnO_(2)and MnSO_(4)>H_(2)O,whereas Co_(3)O_(4)@MnO_(2)nanorods were derived from hydrothermal treatment with Co_(3)O_(4)nanorods and KMnO_(4).The study shows that manganese oxide was tetragonal,while the cobalt oxide was found to be cubic in the crystalline arrangement.Mn surface ions were present in multiple oxidation states(e.g.,Mn^(4+)and Mn^(3+))and surface oxygen deficiencies.The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of BMnO_(2)>Co_(3)O_(4)(S)>Co_(3)O_(4)@MnO_(2)>MnO_(2)>Co_(3)O_(4),matching the changing trend in activity.Among all the samples,B-MnO_(2)>Co_(3)O_(4)(S)showed the preeminent catalytic performance for the oxidation of toluene(T10%=187℃,T50%=276℃,and T90%=339℃).In addition,the B-MnO_(2)>Co_(3)O_(4)(S)sample also exhibited good H_(2)O^(-),CO_(2)^(-),and SO_(2)^(-)resistant performance.The good catalytic performance of B-MnO_(2)>Co_(3)O_(4)(S)is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature.Toluene oxidation over B-MnO_(2)>Co_(3)O_(4)(S)proceeds through the adsorption of O_(2)and toluene to form O∗,OH∗,and H_(2)C(C6H5)∗species,which then react to produce benzyl alcohol,benzoic acid,and benzaldehyde,ultimately converting to CO_(2)and H_(2)O.The findings suggest that B-MnO_(2)>Co_(3)O_(4)(S)has promising potential for use as an effective catalyst in practical applications.
基金supported by the Science and Technology Program of Guangzhou,China(No.202002020020)the National Natural Science Foundation of China(Nos.51878292 and 42002035).
文摘Herein,three supported catalysts,CuO/Al_(2)O_(3),CeO_(2)/Al_(2)O_(3),and CuO-CeO_(2)/Al_(2)O_(3),were synthesized by the convenient impregnation method to reveal the effect of CeO_(2)addition on catalytic performance and reaction mechanism for toluene oxidation.Compared with CuO/Al_(2)O_(3),the T_(50)and T_(90)(the temperatures at 50%and 90%toluene conversion,respectively)of CuO-CeO_(2)/Al_(2)O_(3)were reduced by 33 and 39°C,respectively.N_(2)adsorptiondesorption experiment,XRD,SEM,EDS mapping,Raman,EPR,H_(2)-TPR,O_(2)-TPD,XPS,NH_(3)-TPD,Toluene-TPD,and in-situ DRIFTS were conducted to characterize these catalysts.The excellent catalytic performance of CuO-CeO_(2)/Al_(2)O_(3)could be attributed to its strong coppercerium interaction and high oxygen vacancies concentration.Moreover,in-situ DRIFTS proved that CuO-CeO_(2)/Al_(2)O_(3)promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene.This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.
基金supported by the Scientific Research Project of Hunan Provincial Department of Education (No.22B0458)the National Natural Science Foundation of China (No.52270102).
文摘In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,BET,XPS and H_(2)-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg^(0) removal efficiency at 200℃.By varying the experimental gas components and conditions,it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg^(0).Although O_(2) promoted the abatement of toluene and Hg^(0),the inhibitory role of H_(2)O and SO_(2) offset the promoting effect of O_(2) to some extent.Toluene significantly inhibited Hg^(0) removal,resulting from that toluene was present at concentrations orders of magnitude greater than mercury’s or the catalyst was more prone to adsorb toluene,while Hg^(0) almost exerted non-existent influence on toluene elimination.The mechanistic analysis showed that the forms of toluene and Hg^(0) removal included both adsorption and oxidation,where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr^(3+)+Mn^(3+)/Mn^(4+)+Cr^(6+)+Mn^(2+),which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process,and even the CrMn_(1.5)O_(4) spinel structure could provide a larger catalytic interface,thus enhancing the adsorption/oxidation of toluene and Hg^(0).Therefore,its excellent physicochemical properties make it a costeffective potential industrial catalyst with outstanding synergistic toluene and Hg^(0) removal performance and preeminent resistance to H_(2)O and SO_(2).
基金Project supported by Zhejiang Public Welfare Technology Research Project(LGG19B070003)the National Natural Science Foundation of China(21902069)。
文摘This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is found that the toluene complete conversion over Pd/7.5Ce-beta zeolite occurs at 190℃,with a minimal increase of 20℃even after sulfur poisoning.It is shown that Ce-doping markedly enhances sulfur tolerance besides catalytic activity.The underlying mechanism involves CeO_(2)sites capturing sulfur species,thus safeguarding active Pd species from sulfur poisoning.It can be observed that Pd0active sites,which are crucial in the catalytic high activity,are still present in the most severely poisoned catalyst.Furthermore,Ce-modified catalyst exhibits a more stable pore structure and increased acid strength after sulfur poisoning,all of which are beneficial to improving the sulfur tolerance.Consequently,Pd/Ce-beta zeolite is a promising solution for processing sulfur-containing volatile organic compounds,offering valuable insights for developing effective and sustainable catalysts for environmental remediation.
基金supported by the National Natural Science Foundation of China(Nos.22276086,21976078)the Natural Science Foundation of Jiangxi Province(Nos.20202ACB213001,20232BCJ22003)。
文摘Degrading volatile organic compounds at low temperatures and active sites aggregation are still challenging.In this study,a novel mesoporous zeolite silicalite-1(S-1–meso)enveloped Pt–Ni bimetallic catalysts(noted as Pt1Ni1@S-1–meso)were synthesized via a facile in situ mesoporous template-free method.The Pt–Ni bimetallic nanoparticles were uniformly distributed and displayed a large specific surface area and enriched mesopores to facilitate the deep oxidation of toluene.The presence of the Pt–Ni O interface both increased the dispersion of the catalyst and improved its catalytic performance,thereby reducing the consumption of Pt.The Mars-van Krevelen mechanism and density function theory(DFT)calculations revealed that the Pt–Ni O interface effect changed the electronic structure of Pt and Ni species,reduced the activation potential for oxygen,formed reactive oxygen species,and facilitated the adsorption and activation of reactants in the direction favorable to the toluene oxidation.This study provides a guideline for minimizing the proportion of precious metals used in practical applications and a promising method for toluene elimination at low temperatures.
基金The authors sincerely appreciate funding from“Producing Hydrogen in Trentino-H2@TN”(PAT-Trento)through the research grant(SAP 40104237)Researchers Supporting Project number(RSP2025R399)King Saud University,Riyadh,Saudi Arabia.
文摘Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is particularly significant in challenging coupled systems,such as CO_(2)photoreduction integrated with selective oxidation of toluene to benzaldehyde.However,developing such a system is quite challenging and often requires a precise design and engineering.Herein,we demonstrate a unique Ni-CdS@Ni(OH)_(2)heterojunction synthesized via an in-situ self-assembly method.Comprehensive mechanistic and theoretical investigations reveal that the NiCdS@Ni(OH)_(2)heterojunction induces dual electric fields(EFs):an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)_(2)on NiCdS nanorods,enabling efficient spatial charge separation and enhanced redox potential.As proof of concept,the Ni-CdS@Ni(OH)_(2)heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance,producing CO at a rate of 427μmol g^(-1)h^(-1)and selectively oxidizing toluene to benzaldehyde at a rate of 1476μmol g^(-1)h^(-1)with a selectivity exceeding 85%.This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts,advancing synergistic photocatalytic redox systems.
基金Project supported by National Natural Science Foundation of China(22076180)Youth Innovation Promotion Association of CAS(2019376)Chongqing Bayu Scholar Program(Young Scholar,YS2020048)。
文摘Creating a new low-temperature catalyst in decreasing the emission of volatile organic compounds(VOCs)has great significance under different industrial production situations.In particular,the Zr-UiO-66 is optimized by different amounts of cerium,which not only enhances the physicochemical stability but also increases the number of active sites of Ce_(x)Zr_(y)UiO-66.Furthermore,the catalysts with Co_(3)O_(4)nanoparticles supported on Ce_(x)Zr_(y)UiO-66 were successfully prepared via impregnation method.In the process of toluene degradation,the Co/Ce_(1)Zr_(2)-Ui0-66 attains a 90%conversion rate at 210℃with a space velocity of 60000 mL/(g·h)and toluene concentration at 1000×10^(-6).Meanwhile,the carbon dioxide selectivity reaches 100%at 218℃.The Co/Ce_(1)Zr_(2)-UiO-66 shows great water resistance(3 vol%H_(2)O).Multiple characterization methods were used to figure out the physicochemical properties of the catalysts.It is found that the addition of an appropriate amount of cerium can enhance stability of UiO-66 and surface lattice oxygen proportion.Additionally,the stronger electron transfer between Ce^(4+)and Co^(2+)enables the Co/Ce_(1)Zr_(2)-UiO-66 to possess more active surface oxygen species and Co_(3)+cationic species in all samples.
基金supported by the National Natural Science Foundation of China(52272222)the Taishan Scholar Young Talent Program(tsqn201909114,tsqn201909123)the University Youth Innovation Team of Shandong Province(202201010318)。
文摘Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and high rate-determining step energy barrier for difficult to dehydrogenate.Herein,we report Mn_(x)Ce_(1-x)O_(2)/CNT catalyst for accelerated reaction kinetics.Theoretical and experimental studies indicate that Ce sites promote TL adsorption and polyvalent Mn modulates the electronic structure of Ce sites reducing the rate-determining step energy barrier.This results in increasing^(*)C_(6)H_(5)CH_(2)coverage and effectively accelerating TL oxidation reaction(TOR)kinetics.Excitingly,the Faraday efficiency(FE)and BAC yield of optimized Mn_(0.6)Ce_(0.4)O_(2)/CNT at 2.6 V vs.RHE could reach 85.9%and 653.9 mg h^(-1)cm^(-2),respectively.In addition,the Mn_(0.6)Ce_(0.4)O_(2)/CNT displays a high selectivity of 96.3%for BAC.Combining the TL oxidation reaction with hydrogen evolution reaction,the anion exchange membrane electrolyzer of Mn_(0.6)Ce_(0.4)O_(2)/CNT(+)||Pt/C(-)can reach 100 mA cm^(-2)at the voltage of 3.0 V,in which the BAC yield is 579.4 mg h^(-1)cm^(-2)and the FE is 83.6%.This work achieved high selectivity of TOR at industrial-relevant current densities of 100 mA cm^(-2)at the low voltage for the first time.
基金supported by the National Natural Science Foundation of China(Grant No.12127804)the Supercomputing Center of University of Science and Technology of China.
文摘The binding energy spectra and electron momentum distributions(EMDs)of valence orbitals in toluene molecule were measured by(e,2e)electron momentum spectrometer.A comprehensive analysis of molecular vibrational effects on the EMDs was conducted through harmonic analytical quantum mechanical approach calculations and molecular dynamics simulations within the plane wave impulse approximation(PWIA).Furthermore,the multicenter three-distorted-wave method was employed to investigate the validity of the PWIA.A comparison between experimental measurements and theoretical predictions demonstrates that molecular vibrations have negligible effects on the EMDs,whereas the distorted-wave effects are obvious,particularly in large momentum regions.
基金supported by the National Natural Science Foundation(No.51678291)the Basic Science(Natural Science)Research in Higher Education in Jiangsu Province(No.23KJA610003)the High-level Scientific Research Foundation for the introduction of talent in Nanjing Institute of Technology(No.YKJ201999)。
文摘Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance.
基金supported by the National High Technology Research and Development Program of China(863 Program,2015AA034603)the National Natural Science Foundation of China(21377008)Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions
文摘Three-dimensionally ordered macro-/mesoporous alumina(3DOM Al2O3)-supported cobalt oxide and platinum nanocatalysts(xPt/yCo3O4/3DOM Al2O3,Pt mass fraction(x%)= 0-1.4%,Co3O4 mass fraction(y%) = 0-9.2%) were prepared using poly(methyl methacrylate) templating,incipient wetness impregnation and polyvinyl alcohol-protected reduction.The resulting xPt/yCo3O4/3DOM Al2O3 samples displayed a high-quality 3DOM architecture with macropores(180-200 nm in diameter) and mesopores(4-6 nm in diameter) together with surface areas in the range of 94 to 102m^2/g.Using these techniques,Co3O4 nanoparticles(NPs,18.3 nm) were loaded on the 3DOM Al2O3 surface,after which Pt NPs(2.3-2.5 nm) were uniformly dispersed on theyCo3O4/3DOM Al2O3.The1.3Pt/8.9Co3O4/3DOM Al2O3 exhibited the best performance for toluene oxidation,with a T(90%) value(the temperature required to achieve 90%toluene conversion) of 160 ℃ at a space velocity of20000 mL g^(-1) h^(-1).It is concluded that the excellent catalytic performance of the 1.3Pt/8.9Co3O4/3DOM Al2O3 is owing to well-dispersed Pt NPs,the high concentration of adsorbed oxygen species,good low-temperature reducibility,and strong interaction between the Pt and Co3O4 NPs,as well as the unique bimodal porous structure of the support.
文摘Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The correlations between traffic flows and totals of benzene and toluene were studied during the period of vehicular traffic restrictions from August 17 to August 20 and non-traffic restrictions on August 16 and August 21. The correlation coef- ficient was 0.8 between benzene and toluene. And the calculated daily mean value ratios of benzene to toluene were 0.43-0.50. During the period of vehicular restrictions, traffic flows were reduced about 11.8% and the levels of benzene and toluene were reduced by 11.4% and 12.8%, respectively. The vehicle emissions were recognized as the major sources for atmospheric benzene and toluene in Beijing.
基金This work was supported by the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences (No.J J-10-04), Knowledge Innovation Foundation of Chinese Academy of Sciences (KJCX2-YW-N24), and the National Natural Science Foundation of China (No.40975080 and No.10979061).
文摘The composition of products formed from photooxidation of the aromatic hydrocarbon toluene was investigated. The OH-initiated photooxidation experiments were conducted by irradiating toluene/CH3ONO/NO/air mixtures in a smog chamber, the gaseous products were detected under the supersonic beam conditions by utilizing vacuum ultraviolet photoionization mass spectrometer using synchrotron radiation in real-time. And an aerosol time-of-flight mass spectrometer was used to provide on-line measurements of the individual secondary organic aerosol particle resulting from irradiating toluene. The experimental results demonstrated that there were some differences between the gaseous products and that of particle-phase, the products of glyoxal, 2-hydroxyl-3-oxo-butanal, nitrotoluene, and methyl-nitrophenol only existed in the particle-phase. However, furane, methylglyoxal, 2-methylfurane, benzaldehyde, cresol, and benzoic acid were the predominant photooxidation products in both the gas phase and particle phase.
文摘For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups, was synthesized and characterized by the Fourier transform infrared (FFIR), the gel permeation chromatography (GPC) and the chemical analysis methods. The reaction conditions were studied and optimized. A tracking research on the polymerization process of TDI was taken by using the GPC. The formation processes of the terpolymer, oligomers and higher-polymers were also dealt with. Results show that the TDI terpolymer can be prepared in the presence of Cat-3 catalyst and at the reaction temperature of (60 ±2)℃. The reaction time is short, its outcomes have narrow molecular weights distribution, namely molecular weights from 530 to 550, Mw/Mn =1.10, and the mass fraction of NCO is (25. 0 ± 0. 5)%. With the reaction time prolonging, however, TDI can be further higher-polymedzed to form higher-polymers. Benzoyl chloride (0. 4%, mass fraction), as the stabilizing agent, can effectively inhibit the occurrence of higher-polymerization. The obtained TDI terpolymer can be stable for more than half a year.
文摘The alkylation of toluene with 1,3-pentadiene to produce pentyltoluene was carded out to obtain 2,6-dimethylnaphalene, which is an important intermediate during the production of 2,6-naphthalene dicarboxylic acid. Based on our previous work using anhydrous AlCl3 as catalyst, [bupy]BF4-AlCl3 ionic liquids were employed to catalyze the reaction of 1,3-pentadiene with toluene. The experimental results show that [bupy]BF4-AlCl3 ionic liquids are suitable for the reaction especially when the molar ratio of AlCl3 to [bupy]BF4 is 1.75 : 1, and the reaction could proceed at the temperature as low as 0℃. It could be as active as pure AlCl3, but much more environmentally friendly.