中子动态参数的准确分析与反应堆的安全特性紧密相关。固态燃料钍基熔盐实验堆(Thorium-based Molten Salt experiment Reactor with Solid Fuel,TMSR-SF1)作为第四代新堆型,采用蒙特卡罗输运程序计算其动态参数更有利于核安全评审。本...中子动态参数的准确分析与反应堆的安全特性紧密相关。固态燃料钍基熔盐实验堆(Thorium-based Molten Salt experiment Reactor with Solid Fuel,TMSR-SF1)作为第四代新堆型,采用蒙特卡罗输运程序计算其动态参数更有利于核安全评审。本文基于较通用的蒙特卡罗多粒子输运(Monte Carlo N Particle Transport Code,MCNP)程序,植入了动态参数直接统计方法,用于计算TMSR-SF1中的有效缓发中子份额和有效中子代时间。通过多个ICSBEP(International Criticality Safety Benchmark Evaluation Project)基准题的检验,计算结果与基准题实验误差在±5%以内,证明了该方法的准确性。运用该方法计算得到TMSR-SF1中6组有效缓发中子份额和有效中子代时间随燃耗深度的变化,其计算结果与采用MCNP共轭通量方法所得的数据误差在±3%以内,证明该方法用于TMSR-SF1的动态参数分析是合理可靠的。展开更多
The solid-fueled thorium molten salt reactor(TMSR-SF1) is a 10 MW_(th) test reactor design to be deployed in 5-10 years by the TMSR group.Its design combines coated particle fuel and molten FLiBe coolant for great int...The solid-fueled thorium molten salt reactor(TMSR-SF1) is a 10 MW_(th) test reactor design to be deployed in 5-10 years by the TMSR group.Its design combines coated particle fuel and molten FLiBe coolant for great intrinsic safety features and economic advantages.Due to a large amount of beryllium in the coolant salt,photoneutrons are produced by(y,n) reaction,hence the increasing fraction of effective delayed neutrons in the core by the photoneutrons originating from the long-lived fission products.Some of the delayed photoneutron groups are of long lifetime,so a direct effect is resulted in the transient process and reactivity measurement.To study the impact of photoneutrons for TMSR-SF1,the effective photoneutron fraction is estimated using k-ratio method and performed by the Monte Carlo code(MCNP5) with ENDF/B-Ⅶ cross sections.Based on the coupled neutronphoton point kinetics equations,influence of the photoneutrons is analyzed.The results show that the impact of photoneutrons is not negligible in reactivity measurement.Without considering photoneutrons in on-line reactivity measurement based on inverse point kinetics can result in overestimation of the positive reactivity and underestimation of the negative reactivity.The photoneutrons also lead to more waiting time for the doubling time measurement.Since the photoneutron precursors take extremely long time to achieve equilibrium,a "steady" power operation may not directly imply a "real" criticality.展开更多
The solid fuel thorium molten salt reactor(TMSR-SF1) is a 10-MWth fluoride-cooled pebble bed reactor. As a new reactor concept, one of the major limiting factors to reactor lifetime is radiation-induced material damag...The solid fuel thorium molten salt reactor(TMSR-SF1) is a 10-MWth fluoride-cooled pebble bed reactor. As a new reactor concept, one of the major limiting factors to reactor lifetime is radiation-induced material damage. The fast neutron flux(E > 0.1 MeV) can be used to assess possible radiation damage. Hence, a method for calculating high-resolution fast neutron flux distribution of the full-scale TMSR-SF1 reactor is required. In this study,a two-step subsection approach based on MCNP5 involving a global variance reduction method, referred to as forward-weighted consistent adjoint-driven importance sampling, was implemented to provide fast neutron flux distribution throughout the TMSR-SF1 facility. In addition,instead of using the general source specification cards, the user-provided SOURCE subroutine in MCNP5 source code was employed to implement a source biasing technique specialized for TMSR-SF1. In contrast to the one-step analog approach, the two-step subsection approach eliminates zero-scored mesh tally cells and obtains tally results with extremely uniform and low relative uncertainties.Furthermore, the maximum fast neutron fluxes of the main components in TMSR-SF1 are provided, which can be used for radiation damage assessment of the structural materials.展开更多
The 10 MW_(th) solid-fueled thorium molten salt reactor(TMSR-SF1) is a FLi Be salt-cooled pebble bed reactor to be deployed in 5–10 years, designed by the TMSR group. Due to a large amount of beryllium in the core, t...The 10 MW_(th) solid-fueled thorium molten salt reactor(TMSR-SF1) is a FLi Be salt-cooled pebble bed reactor to be deployed in 5–10 years, designed by the TMSR group. Due to a large amount of beryllium in the core, the photoneutrons are produced via(γ , n) reactions.Some of them are generated a long time after the fission event and therefore are considered as delayed neutrons. In this paper, we redefine the effective delayed neutrons into two fractions: the delayed fission neutron fraction and the delayed photoneutron fraction. With some reasonable assumptions, the inner product method and the k-ratio method are adopted for studying the effective delayed photoneutron fraction. In the k-ratio method, the Monte Carlo code MCNP6 is used to evaluate the effective photoneutron fraction as the ratio between the multiplication factors with and without contribution of the delayed neutrons and photoneutrons. In the inner product method, with the Monte Carlo and deterministic codes together, we use the adjoint neutron flux as a weighting function for the neutrons and photoneutrons generated in the core. Results of the two methods agree well with each other, but the k-ratio method requires much more computing time for the same precision.展开更多
钍基熔盐反应堆(Thorium Molten Salt Reactor,TMSR)项目是中国科学院科技先导项目之一。基于10 MW热功率熔盐反应堆-固体燃料(Thorium Molten Salt Reactor-Solid Fuel,TMSR-SF)的设计,对TMSR的关键技术安全分析进行了初步研究。TMSR-S...钍基熔盐反应堆(Thorium Molten Salt Reactor,TMSR)项目是中国科学院科技先导项目之一。基于10 MW热功率熔盐反应堆-固体燃料(Thorium Molten Salt Reactor-Solid Fuel,TMSR-SF)的设计,对TMSR的关键技术安全分析进行了初步研究。TMSR-SF与现有反应堆之间的差异对核安全审查提出挑战,TMSR-SF审查方法的研究将准备其安全审查的技术和要求。固态燃料熔盐实验堆安全分析关键技术初步研究包含4个方面:堆芯核设计关键安全限值、事故序列及验收准则、源项及其审评方法和验收准则、概率安全评价方法和始发事件。首先对其它类型反应堆的安全审查方法进行了研究,对其关键参数和重要规定做了概述,并借鉴了高温气体冷堆和钠冷却快堆的审评要求和方法;然后使用蒙特卡罗和其他方法、模型来计算TMSR-SF的关键参数。应用逻辑图方法讨论概率风险评价(Probabilistic Risk Assessment,PRA)方法和始发事件清单。在本研究中,计算了核心核设计安全限值,研究和讨论事故列表和分类,讨论了TMSR-SF的PRA框架和始发事件清单,该研究将支持TMSR-SF的安全审查和安全设计。展开更多
燃耗补偿棒棒位是反应堆监测的一项重要参数,同时棒位移动会对堆芯物理参数分布造成影响。计算了固态燃料钍基熔盐实验堆(Thorium Molten Salt Reactor with Solid Fuel, TMSR-SF1)的补偿棒位变化,并分析其对功率、通量及燃耗分布的影...燃耗补偿棒棒位是反应堆监测的一项重要参数,同时棒位移动会对堆芯物理参数分布造成影响。计算了固态燃料钍基熔盐实验堆(Thorium Molten Salt Reactor with Solid Fuel, TMSR-SF1)的补偿棒位变化,并分析其对功率、通量及燃耗分布的影响。在一般蒙特卡罗燃耗软件基础上耦合了调棒临界搜索功能,计算表明大部分临界搜索只需三次,验证了算法收敛的有效性。对TMSR-SF1未分组补偿棒方案进行了计算,结果表明:补偿棒位在氙平衡及寿期末时刻有较大提升幅度,其余时刻近似线性上升;补偿棒初期在总行程一半偏上位置,增加了堆芯轴向功率及中子通量分布的不均匀性,相对寿期末功率峰因子偏大17%,最大中子通量偏大12%。该变化未对总体设计参数造成显著影响,证明补偿棒未分组方案具有设计可行性。展开更多
文摘中子动态参数的准确分析与反应堆的安全特性紧密相关。固态燃料钍基熔盐实验堆(Thorium-based Molten Salt experiment Reactor with Solid Fuel,TMSR-SF1)作为第四代新堆型,采用蒙特卡罗输运程序计算其动态参数更有利于核安全评审。本文基于较通用的蒙特卡罗多粒子输运(Monte Carlo N Particle Transport Code,MCNP)程序,植入了动态参数直接统计方法,用于计算TMSR-SF1中的有效缓发中子份额和有效中子代时间。通过多个ICSBEP(International Criticality Safety Benchmark Evaluation Project)基准题的检验,计算结果与基准题实验误差在±5%以内,证明了该方法的准确性。运用该方法计算得到TMSR-SF1中6组有效缓发中子份额和有效中子代时间随燃耗深度的变化,其计算结果与采用MCNP共轭通量方法所得的数据误差在±3%以内,证明该方法用于TMSR-SF1的动态参数分析是合理可靠的。
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘The solid-fueled thorium molten salt reactor(TMSR-SF1) is a 10 MW_(th) test reactor design to be deployed in 5-10 years by the TMSR group.Its design combines coated particle fuel and molten FLiBe coolant for great intrinsic safety features and economic advantages.Due to a large amount of beryllium in the coolant salt,photoneutrons are produced by(y,n) reaction,hence the increasing fraction of effective delayed neutrons in the core by the photoneutrons originating from the long-lived fission products.Some of the delayed photoneutron groups are of long lifetime,so a direct effect is resulted in the transient process and reactivity measurement.To study the impact of photoneutrons for TMSR-SF1,the effective photoneutron fraction is estimated using k-ratio method and performed by the Monte Carlo code(MCNP5) with ENDF/B-Ⅶ cross sections.Based on the coupled neutronphoton point kinetics equations,influence of the photoneutrons is analyzed.The results show that the impact of photoneutrons is not negligible in reactivity measurement.Without considering photoneutrons in on-line reactivity measurement based on inverse point kinetics can result in overestimation of the positive reactivity and underestimation of the negative reactivity.The photoneutrons also lead to more waiting time for the doubling time measurement.Since the photoneutron precursors take extremely long time to achieve equilibrium,a "steady" power operation may not directly imply a "real" criticality.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘The solid fuel thorium molten salt reactor(TMSR-SF1) is a 10-MWth fluoride-cooled pebble bed reactor. As a new reactor concept, one of the major limiting factors to reactor lifetime is radiation-induced material damage. The fast neutron flux(E > 0.1 MeV) can be used to assess possible radiation damage. Hence, a method for calculating high-resolution fast neutron flux distribution of the full-scale TMSR-SF1 reactor is required. In this study,a two-step subsection approach based on MCNP5 involving a global variance reduction method, referred to as forward-weighted consistent adjoint-driven importance sampling, was implemented to provide fast neutron flux distribution throughout the TMSR-SF1 facility. In addition,instead of using the general source specification cards, the user-provided SOURCE subroutine in MCNP5 source code was employed to implement a source biasing technique specialized for TMSR-SF1. In contrast to the one-step analog approach, the two-step subsection approach eliminates zero-scored mesh tally cells and obtains tally results with extremely uniform and low relative uncertainties.Furthermore, the maximum fast neutron fluxes of the main components in TMSR-SF1 are provided, which can be used for radiation damage assessment of the structural materials.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)
文摘The 10 MW_(th) solid-fueled thorium molten salt reactor(TMSR-SF1) is a FLi Be salt-cooled pebble bed reactor to be deployed in 5–10 years, designed by the TMSR group. Due to a large amount of beryllium in the core, the photoneutrons are produced via(γ , n) reactions.Some of them are generated a long time after the fission event and therefore are considered as delayed neutrons. In this paper, we redefine the effective delayed neutrons into two fractions: the delayed fission neutron fraction and the delayed photoneutron fraction. With some reasonable assumptions, the inner product method and the k-ratio method are adopted for studying the effective delayed photoneutron fraction. In the k-ratio method, the Monte Carlo code MCNP6 is used to evaluate the effective photoneutron fraction as the ratio between the multiplication factors with and without contribution of the delayed neutrons and photoneutrons. In the inner product method, with the Monte Carlo and deterministic codes together, we use the adjoint neutron flux as a weighting function for the neutrons and photoneutrons generated in the core. Results of the two methods agree well with each other, but the k-ratio method requires much more computing time for the same precision.
文摘燃耗补偿棒棒位是反应堆监测的一项重要参数,同时棒位移动会对堆芯物理参数分布造成影响。计算了固态燃料钍基熔盐实验堆(Thorium Molten Salt Reactor with Solid Fuel, TMSR-SF1)的补偿棒位变化,并分析其对功率、通量及燃耗分布的影响。在一般蒙特卡罗燃耗软件基础上耦合了调棒临界搜索功能,计算表明大部分临界搜索只需三次,验证了算法收敛的有效性。对TMSR-SF1未分组补偿棒方案进行了计算,结果表明:补偿棒位在氙平衡及寿期末时刻有较大提升幅度,其余时刻近似线性上升;补偿棒初期在总行程一半偏上位置,增加了堆芯轴向功率及中子通量分布的不均匀性,相对寿期末功率峰因子偏大17%,最大中子通量偏大12%。该变化未对总体设计参数造成显著影响,证明补偿棒未分组方案具有设计可行性。