In order to comply with discharge standards, a gas–solid separator is used to remove solid particles from the thorium molten salt reactor-solid fuel (TMSR-SF) system. As a key component, it directly determines system...In order to comply with discharge standards, a gas–solid separator is used to remove solid particles from the thorium molten salt reactor-solid fuel (TMSR-SF) system. As a key component, it directly determines system energy efficiency. However, current gas–solid separators, based on activated carbon adsorption technology, result in high pressure drops and increased maintenance costs. In the present study, a new combined gas–solid separator was developed for the TMSR-SF. Based on a simplified computational fluid dynamics (CFD) model, the gas–solid twophase flow and the motion trajectory of solid particles were simulated for this new separator using commercial ANSYS 16.0 software. The flow and separation mechanism for this structure were also been discussed in terms of their velocity effects and pressure field distributions, and then the structure was optimized based on the influence of key structural parameters on pressure and separation efficiency. The results showed that the standard k–ε model could be achieved and accurately simulated the new combined separator. In this new combined gas–solid separator, coarse particles are separated in the first stage using rotating centrifugal motion, and then fine particles are filtered in the second stage, giving a separation efficiency of up to 96.11%. The optimum blade inclination angle and numbers were calculated to be 45° and four, respectively. It implicated that the combined separator could be of great significance in a wide variety of applications.展开更多
The solid-fueled thorium molten salt reactor(TMSR-SF1) is a 10 MW_(th) test reactor design to be deployed in 5-10 years by the TMSR group.Its design combines coated particle fuel and molten FLiBe coolant for great int...The solid-fueled thorium molten salt reactor(TMSR-SF1) is a 10 MW_(th) test reactor design to be deployed in 5-10 years by the TMSR group.Its design combines coated particle fuel and molten FLiBe coolant for great intrinsic safety features and economic advantages.Due to a large amount of beryllium in the coolant salt,photoneutrons are produced by(y,n) reaction,hence the increasing fraction of effective delayed neutrons in the core by the photoneutrons originating from the long-lived fission products.Some of the delayed photoneutron groups are of long lifetime,so a direct effect is resulted in the transient process and reactivity measurement.To study the impact of photoneutrons for TMSR-SF1,the effective photoneutron fraction is estimated using k-ratio method and performed by the Monte Carlo code(MCNP5) with ENDF/B-Ⅶ cross sections.Based on the coupled neutronphoton point kinetics equations,influence of the photoneutrons is analyzed.The results show that the impact of photoneutrons is not negligible in reactivity measurement.Without considering photoneutrons in on-line reactivity measurement based on inverse point kinetics can result in overestimation of the positive reactivity and underestimation of the negative reactivity.The photoneutrons also lead to more waiting time for the doubling time measurement.Since the photoneutron precursors take extremely long time to achieve equilibrium,a "steady" power operation may not directly imply a "real" criticality.展开更多
基于最新发布的评价核数据库ENDF/B-VII.1,简要介绍了利用标准程序NJOY加工固态燃料钍基熔盐堆(Thorium Molten Salt Reactor-Solid Fuel,TMSR-SF)中子能谱测量所需温度下多群截面库的过程。详细分析了两个典型的核素加工所得核反应道...基于最新发布的评价核数据库ENDF/B-VII.1,简要介绍了利用标准程序NJOY加工固态燃料钍基熔盐堆(Thorium Molten Salt Reactor-Solid Fuel,TMSR-SF)中子能谱测量所需温度下多群截面库的过程。详细分析了两个典型的核素加工所得核反应道的多群截面与温度的关系,并将不同温度下的截面库用于中子能谱测量,分析了中子能谱测量结果的误差与温度所引起截面库变化的关系。结果表明,不同类型核反应道的截面所受温度影响不同,特别是核素对超热中子的截面存在共振峰问题受温度影响最大,这是由于多普勒效应影响,所以中子能谱测量结果受核反应道选择的影响符合物理规律,加工所得873 K下的核截面库可用于TMSR-SF相关中子能谱测量。展开更多
The solid fuel thorium molten salt reactor(TMSR-SF1) is a 10-MWth fluoride-cooled pebble bed reactor. As a new reactor concept, one of the major limiting factors to reactor lifetime is radiation-induced material damag...The solid fuel thorium molten salt reactor(TMSR-SF1) is a 10-MWth fluoride-cooled pebble bed reactor. As a new reactor concept, one of the major limiting factors to reactor lifetime is radiation-induced material damage. The fast neutron flux(E > 0.1 MeV) can be used to assess possible radiation damage. Hence, a method for calculating high-resolution fast neutron flux distribution of the full-scale TMSR-SF1 reactor is required. In this study,a two-step subsection approach based on MCNP5 involving a global variance reduction method, referred to as forward-weighted consistent adjoint-driven importance sampling, was implemented to provide fast neutron flux distribution throughout the TMSR-SF1 facility. In addition,instead of using the general source specification cards, the user-provided SOURCE subroutine in MCNP5 source code was employed to implement a source biasing technique specialized for TMSR-SF1. In contrast to the one-step analog approach, the two-step subsection approach eliminates zero-scored mesh tally cells and obtains tally results with extremely uniform and low relative uncertainties.Furthermore, the maximum fast neutron fluxes of the main components in TMSR-SF1 are provided, which can be used for radiation damage assessment of the structural materials.展开更多
熔盐堆作为第四代反应堆论坛推荐的6种候选堆型之一,具有输出温度高、能量密度高、无水冷却等特点。固态钍基熔盐堆(Thorium Molten Salt Reactor with Solid Fuel,TMSR-SF1)堆芯大部分结构材料为石墨,冷却剂杂质及石墨材料中的13C和杂...熔盐堆作为第四代反应堆论坛推荐的6种候选堆型之一,具有输出温度高、能量密度高、无水冷却等特点。固态钍基熔盐堆(Thorium Molten Salt Reactor with Solid Fuel,TMSR-SF1)堆芯大部分结构材料为石墨,冷却剂杂质及石墨材料中的13C和杂质N、O易被活化产生14C。14C半衰期较长,同其他稳态核素12C、13C一样广泛参与各种复杂的生物循环,在反应堆中受到关注。TMSR-SF1中的14C广泛分布于冷却剂、堆芯石墨结构材料和燃料元件。本文采用输运燃耗耦合方法,应用SCALE6.1的TRITION控制模块对反应堆各区域的14C放射性活度进行计算分析,结果表明,反应堆在正常运行工况下一回路每年产生的14C放射性活度为0.34 TBq,满足现有的压水堆、重水堆管理限值要求。向环境释放的14C主要来自于一回路熔盐中N杂质的活化。展开更多
Thorium based molten salt reactor-solid fuel(TMSR-SF)design is an innovative reactor concept that uses high-temperature tristructural-isotropic(TR1SO)fuel with a low-pressure liquid salt coolant.In anticipation of get...Thorium based molten salt reactor-solid fuel(TMSR-SF)design is an innovative reactor concept that uses high-temperature tristructural-isotropic(TR1SO)fuel with a low-pressure liquid salt coolant.In anticipation of getting licensed applications for TMS R-S F in the future,it is necessary to fully understand the significant features and phenomena of TMSR-SF design,as well as its transient behavior during accidents.In this paper,the safety-relevant phenomena,importance,and knowledge base were assessed for the selected events and the transient of TMSR-SF during station blackout scenario is simulated based on RELAP/SCDAPSIM Mod 4.0.The phenomena having significant impact but with limited knowledge of their history are core coolant bypass flows,outlet plenum flow distribution,and intermediate heat exchanger(IHX)over/under cooling transients.Some thermal hydraulic parameters during the station blackout scenario are also discussed.展开更多
文摘In order to comply with discharge standards, a gas–solid separator is used to remove solid particles from the thorium molten salt reactor-solid fuel (TMSR-SF) system. As a key component, it directly determines system energy efficiency. However, current gas–solid separators, based on activated carbon adsorption technology, result in high pressure drops and increased maintenance costs. In the present study, a new combined gas–solid separator was developed for the TMSR-SF. Based on a simplified computational fluid dynamics (CFD) model, the gas–solid twophase flow and the motion trajectory of solid particles were simulated for this new separator using commercial ANSYS 16.0 software. The flow and separation mechanism for this structure were also been discussed in terms of their velocity effects and pressure field distributions, and then the structure was optimized based on the influence of key structural parameters on pressure and separation efficiency. The results showed that the standard k–ε model could be achieved and accurately simulated the new combined separator. In this new combined gas–solid separator, coarse particles are separated in the first stage using rotating centrifugal motion, and then fine particles are filtered in the second stage, giving a separation efficiency of up to 96.11%. The optimum blade inclination angle and numbers were calculated to be 45° and four, respectively. It implicated that the combined separator could be of great significance in a wide variety of applications.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘The solid-fueled thorium molten salt reactor(TMSR-SF1) is a 10 MW_(th) test reactor design to be deployed in 5-10 years by the TMSR group.Its design combines coated particle fuel and molten FLiBe coolant for great intrinsic safety features and economic advantages.Due to a large amount of beryllium in the coolant salt,photoneutrons are produced by(y,n) reaction,hence the increasing fraction of effective delayed neutrons in the core by the photoneutrons originating from the long-lived fission products.Some of the delayed photoneutron groups are of long lifetime,so a direct effect is resulted in the transient process and reactivity measurement.To study the impact of photoneutrons for TMSR-SF1,the effective photoneutron fraction is estimated using k-ratio method and performed by the Monte Carlo code(MCNP5) with ENDF/B-Ⅶ cross sections.Based on the coupled neutronphoton point kinetics equations,influence of the photoneutrons is analyzed.The results show that the impact of photoneutrons is not negligible in reactivity measurement.Without considering photoneutrons in on-line reactivity measurement based on inverse point kinetics can result in overestimation of the positive reactivity and underestimation of the negative reactivity.The photoneutrons also lead to more waiting time for the doubling time measurement.Since the photoneutron precursors take extremely long time to achieve equilibrium,a "steady" power operation may not directly imply a "real" criticality.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘The solid fuel thorium molten salt reactor(TMSR-SF1) is a 10-MWth fluoride-cooled pebble bed reactor. As a new reactor concept, one of the major limiting factors to reactor lifetime is radiation-induced material damage. The fast neutron flux(E > 0.1 MeV) can be used to assess possible radiation damage. Hence, a method for calculating high-resolution fast neutron flux distribution of the full-scale TMSR-SF1 reactor is required. In this study,a two-step subsection approach based on MCNP5 involving a global variance reduction method, referred to as forward-weighted consistent adjoint-driven importance sampling, was implemented to provide fast neutron flux distribution throughout the TMSR-SF1 facility. In addition,instead of using the general source specification cards, the user-provided SOURCE subroutine in MCNP5 source code was employed to implement a source biasing technique specialized for TMSR-SF1. In contrast to the one-step analog approach, the two-step subsection approach eliminates zero-scored mesh tally cells and obtains tally results with extremely uniform and low relative uncertainties.Furthermore, the maximum fast neutron fluxes of the main components in TMSR-SF1 are provided, which can be used for radiation damage assessment of the structural materials.
文摘熔盐堆作为第四代反应堆论坛推荐的6种候选堆型之一,具有输出温度高、能量密度高、无水冷却等特点。固态钍基熔盐堆(Thorium Molten Salt Reactor with Solid Fuel,TMSR-SF1)堆芯大部分结构材料为石墨,冷却剂杂质及石墨材料中的13C和杂质N、O易被活化产生14C。14C半衰期较长,同其他稳态核素12C、13C一样广泛参与各种复杂的生物循环,在反应堆中受到关注。TMSR-SF1中的14C广泛分布于冷却剂、堆芯石墨结构材料和燃料元件。本文采用输运燃耗耦合方法,应用SCALE6.1的TRITION控制模块对反应堆各区域的14C放射性活度进行计算分析,结果表明,反应堆在正常运行工况下一回路每年产生的14C放射性活度为0.34 TBq,满足现有的压水堆、重水堆管理限值要求。向环境释放的14C主要来自于一回路熔盐中N杂质的活化。
文摘Thorium based molten salt reactor-solid fuel(TMSR-SF)design is an innovative reactor concept that uses high-temperature tristructural-isotropic(TR1SO)fuel with a low-pressure liquid salt coolant.In anticipation of getting licensed applications for TMS R-S F in the future,it is necessary to fully understand the significant features and phenomena of TMSR-SF design,as well as its transient behavior during accidents.In this paper,the safety-relevant phenomena,importance,and knowledge base were assessed for the selected events and the transient of TMSR-SF during station blackout scenario is simulated based on RELAP/SCDAPSIM Mod 4.0.The phenomena having significant impact but with limited knowledge of their history are core coolant bypass flows,outlet plenum flow distribution,and intermediate heat exchanger(IHX)over/under cooling transients.Some thermal hydraulic parameters during the station blackout scenario are also discussed.