Closed-loop neuromodulation,especially using the phase of the electroencephalography(EEG)rhythm to assess the real-time brain state and optimize the brain stimulation process,is becoming a hot research topic.Because t...Closed-loop neuromodulation,especially using the phase of the electroencephalography(EEG)rhythm to assess the real-time brain state and optimize the brain stimulation process,is becoming a hot research topic.Because the EEG signal is non-stationary,the commonly used EEG phase-based prediction methods have large variances,which may reduce the accuracy of the phase prediction.In this study,we proposed a machine learning-based EEG phase prediction network,which we call EEG phase prediction network(EPN),to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data.We verified the performance of EPN on pre-recorded data,simulated EEG data,and a real-time experiment.Compared with widely used state-of-the-art models(optimized multi-layer filter architecture,auto-regress,and educated temporal prediction),EPN achieved the lowest variance and the greatest accuracy.Thus,the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation.展开更多
基金supported by the Key Collaborative Research Program of the Alliance of International Science Organizations(ANSO-CR-KP-2022-10)Science and Technology Innovation 2030-Brain Science and Brain-Inspired Intelligence Project(2021ZD0200200)+2 种基金Natural Science Foundation of China(82151307,82202253,and 31620103905)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32030207)Science Frontier Program of the Chinese Academy of Sciences(QYZDJ-SSW-SMCO19).
文摘Closed-loop neuromodulation,especially using the phase of the electroencephalography(EEG)rhythm to assess the real-time brain state and optimize the brain stimulation process,is becoming a hot research topic.Because the EEG signal is non-stationary,the commonly used EEG phase-based prediction methods have large variances,which may reduce the accuracy of the phase prediction.In this study,we proposed a machine learning-based EEG phase prediction network,which we call EEG phase prediction network(EPN),to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data.We verified the performance of EPN on pre-recorded data,simulated EEG data,and a real-time experiment.Compared with widely used state-of-the-art models(optimized multi-layer filter architecture,auto-regress,and educated temporal prediction),EPN achieved the lowest variance and the greatest accuracy.Thus,the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation.