On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy par...On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy particles in the space radiation environments.Single event upset(SEU)is one of the major radiation effects,which influences the satellite reliability greatly.Triple modular redundancy(TMR) is a classic and efficient method to mask SEUs.However,TMR uses three identical modules and a comparison logic,the circuit size becomes unacceptable,especially in the resource limited environments such as OBP systems.Considering that,a new SEU-tolerant method based on residue code and high-level synthesis(HLS) is proposed,and the new method is applied to FIR filters,which are typical structures in the OBP systems.The simulation results show that,for an applicable HLS scheduling scheme,area reduction can be reduced by 48.26%compared to TMR,while fault missing rate is 0.15%.展开更多
Static Random Access Memory(SRAM) based Field Programmable Gate Array(FPGA) is widely applied in the field of aerospace, whose anti-SEU(Single Event Upset) capability becomes more and more important. To improve anti-F...Static Random Access Memory(SRAM) based Field Programmable Gate Array(FPGA) is widely applied in the field of aerospace, whose anti-SEU(Single Event Upset) capability becomes more and more important. To improve anti-FPGA SEU capability, the registers of the circuit netlist are tripled and divided into three categories in this study. By the packing algorithm, the registers of triple modular redundancy are loaded into different configurable logic block. At the same time, the packing algorithm considers the effect of large fan-out nets. The experimental results show that the algorithm successfully realize the packing of the register of Triple Modular Redundancy(TMR). Comparing with Timing Versatile PACKing(TVPACK), the algorithm in this study is able to obtain a 11% reduction of the number of the nets in critical path, and a 12% reduction of the time delay in critical path on average when TMR is not considered. Especially, some critical path delay of circuit can be improved about 33%.展开更多
Much research has been done on the dependability evaluation of computer systems. However, much of this is gone no further than study of the fault coverage of such systems, with little focus on the relationship between...Much research has been done on the dependability evaluation of computer systems. However, much of this is gone no further than study of the fault coverage of such systems, with little focus on the relationship between fault coverage and overall system dependability. In this paper, a Markovian dependability model for triple-modular-redundancy (TMR) system is presented. Having fully considered the effects of fault coverage, working time, and constant failure rate of single module on the dependability of the target TMR system, the model is built based on the stepwise degradation strategy. Through the model, the relationship between the fault coverage and the dependability of the system is determined. What is more, the dependability of the system can be dynamically and precisely predicted at any given time with the fault coverage set. This will be of much benefit for the dependability evaluation and improvement, and be helpful for the system design and maintenance.展开更多
基金Supported by the National S&T Major Project(No.2011ZX03003-003-01,2011ZX03004-004)the National Basic Research Program of China(No.2012CB316002)
文摘On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy particles in the space radiation environments.Single event upset(SEU)is one of the major radiation effects,which influences the satellite reliability greatly.Triple modular redundancy(TMR) is a classic and efficient method to mask SEUs.However,TMR uses three identical modules and a comparison logic,the circuit size becomes unacceptable,especially in the resource limited environments such as OBP systems.Considering that,a new SEU-tolerant method based on residue code and high-level synthesis(HLS) is proposed,and the new method is applied to FIR filters,which are typical structures in the OBP systems.The simulation results show that,for an applicable HLS scheduling scheme,area reduction can be reduced by 48.26%compared to TMR,while fault missing rate is 0.15%.
基金Supported by the National Natural Science Foundation of China(No.61106033)
文摘Static Random Access Memory(SRAM) based Field Programmable Gate Array(FPGA) is widely applied in the field of aerospace, whose anti-SEU(Single Event Upset) capability becomes more and more important. To improve anti-FPGA SEU capability, the registers of the circuit netlist are tripled and divided into three categories in this study. By the packing algorithm, the registers of triple modular redundancy are loaded into different configurable logic block. At the same time, the packing algorithm considers the effect of large fan-out nets. The experimental results show that the algorithm successfully realize the packing of the register of Triple Modular Redundancy(TMR). Comparing with Timing Versatile PACKing(TVPACK), the algorithm in this study is able to obtain a 11% reduction of the number of the nets in critical path, and a 12% reduction of the time delay in critical path on average when TMR is not considered. Especially, some critical path delay of circuit can be improved about 33%.
基金supported by Innovation Project of Shanghai Municipal Education Commission (No. 11YZ09)Shanghai Leading Academic Discipline Project (No. J50103)Foundation of Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences
文摘Much research has been done on the dependability evaluation of computer systems. However, much of this is gone no further than study of the fault coverage of such systems, with little focus on the relationship between fault coverage and overall system dependability. In this paper, a Markovian dependability model for triple-modular-redundancy (TMR) system is presented. Having fully considered the effects of fault coverage, working time, and constant failure rate of single module on the dependability of the target TMR system, the model is built based on the stepwise degradation strategy. Through the model, the relationship between the fault coverage and the dependability of the system is determined. What is more, the dependability of the system can be dynamically and precisely predicted at any given time with the fault coverage set. This will be of much benefit for the dependability evaluation and improvement, and be helpful for the system design and maintenance.