期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
TLERAD: Transfer Learning for Enhanced Ransomware Attack Detection
1
作者 Isha Sood Varsha Sharm 《Computers, Materials & Continua》 SCIE EI 2024年第11期2791-2818,共28页
Ransomware has emerged as a critical cybersecurity threat,characterized by its ability to encrypt user data or lock devices,demanding ransom for their release.Traditional ransomware detection methods face limitations ... Ransomware has emerged as a critical cybersecurity threat,characterized by its ability to encrypt user data or lock devices,demanding ransom for their release.Traditional ransomware detection methods face limitations due to their assumption of similar data distributions between training and testing phases,rendering them less effective against evolving ransomware families.This paper introduces TLERAD(Transfer Learning for Enhanced Ransomware Attack Detection),a novel approach that leverages unsupervised transfer learning and co-clustering techniques to bridge the gap between source and target domains,enabling robust detection of both known and unknown ransomware variants.The proposed method achieves high detection accuracy,with an AUC of 0.98 for known ransomware and 0.93 for unknown ransomware,significantly outperforming baseline methods.Comprehensive experiments demonstrate TLERAD’s effectiveness in real-world scenarios,highlighting its adapt-ability to the rapidly evolving ransomware landscape.The paper also discusses future directions for enhancing TLERAD,including real-time adaptation,integration with lightweight and post-quantum cryptography,and the incorporation of explainable AI techniques. 展开更多
关键词 Ransomware detection transfer learning unsupervised learning CO-CLUSTERING CYBERSECURITY machine learning lightweight cryptography post-quantum cryptography explainable AI tlerad
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部