In previous studies,we showed that TP53-induced glycolysis and apoptosis regulator(TIGAR) protects neurons against ischemic brain injury.In the present study,we investigated the developmental changes of TIGAR level ...In previous studies,we showed that TP53-induced glycolysis and apoptosis regulator(TIGAR) protects neurons against ischemic brain injury.In the present study,we investigated the developmental changes of TIGAR level in mouse brain and the correlation of TIGAR expression with the vulnerability of neurons to ischemic injury.We found that the TIGAR level was high in the embryonic stage,dropped at birth,partially recovered in the early postnatal period,and then continued to decline to a lower level in early adult and aged mice.The TIGAR expression was higher after ischemia/reperfusion in mouse brain 8and 12 weeks after birth.Four-week-old mice had smaller infarct volumes,lower neurological scores,and lower mortality rates after ischemia than 8- and12-week-old mice.TIGAR expression also increased in response to oxygen glucose deprivation(OGD)/reoxygenation insult or H_2O_2 treatment in cultured primary neurons from different embryonic stages(E16 and E20).The neurons cultured from the early embryonic period had a greater resistance to OGD and oxidative insult.Higher TIGAR levels correlated with higher pentose phosphate pathway activity and less oxidative stress.Older mice and more mature neurons had more severe DNA and mitochondrial damage than younger mice and less mature neurons in response to ischemia/reperfusion or OGD/reoxygenation insult.Supplementation of cultured neurons with nicotinamide adenine dinuclectide phosphate(NADPH) significantly reduced ischemic injury.These results suggest that TIGAR expression changes during development and its expression level may be correlated with the vulnerability of neurons to ischemic injury.展开更多
Metabolic and epigenetic reprogramming play important roles in cancer therapeutic resistance.However,their interplays are poorly understood.We report here that elevated TIGAR(TP53-induced glycolysis and apoptosis regu...Metabolic and epigenetic reprogramming play important roles in cancer therapeutic resistance.However,their interplays are poorly understood.We report here that elevated TIGAR(TP53-induced glycolysis and apoptosis regulator),an antioxidant and glucose metabolic regulator and a target of oncogenic histone methyltransferase NSD2(nuclear receptor binding SET domain protein 2),is mainly localized in the nucleus of therapeutic resistant tumor cells where it stimulates NSD2 expression and elevates global H3K36me2 mark.Mechanistically,TIGAR directly interacts with the antioxidant master regulator NRF2 and facilitates chromatin recruitment of NRF2,H3K4me3 methylase MLL1 and elongating Pol-II to stimulate the expression of both new(NSD2)and established(NQO1/2,PRDX1 and GSTM4)targets of NRF2,independent of its enzymatic activity.Nuclear TIGAR confers cancer cell resistance to chemotherapy and hormonal therapy in vitro and in tumors through effective maintenance of redox homeostasis.In addition,nuclear accumulation of TIGAR is positively associated with NSD2 expression in clinical tumors and strongly correlated with poor survival.These findings define a nuclear TIGAR-mediated epigenetic autoregulatory loop in redox rebalance for tumor therapeutic resistance.展开更多
Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator(TIGAR)can protect neurons after cerebral ischemia/reperfusion.However,the role of TIGAR in neonatal hypoxic-ischemic brain da...Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator(TIGAR)can protect neurons after cerebral ischemia/reperfusion.However,the role of TIGAR in neonatal hypoxic-ischemic brain damage(HIBD)remains unknown.In the present study,7-day-old Sprague-Dawley rat models of HIBD were established by permanent occlusion of the left common carotid artery followed by 2-hour hypoxia.At 6 days before induction of HIBD,a lentiviral vector containing short hairpin RNA of either TIGAR or gasdermin D(LV-sh_TIGAR or LV-sh_GSDMD)was injected into the left lateral ventricle and striatum.Highly aggressively proliferating immortalized(HAPI)microglial cell models of in vitro HIBD were established by 2-hour oxygen/glucose deprivation followed by 24-hour reoxygenation.Three days before in vitro HIBD induction,HAPI microglial cells were transfected with LV-sh_TIGAR or LV-sh_GSDMD.Our results showed that TIGAR expression was increased in the neonatal rat cortex after HIBD and in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation.Lentivirusmediated TIGAR knockdown in rats markedly worsened pyroptosis and brain damage after hypoxia/ischemia in vivo and in vitro.Application of exogenous nicotinamide adenine dinucleotide phosphate(NADPH)increased the NADPH level and the glutathione/oxidized glutathione ratio and decreased reactive oxygen species levels in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation.Additionally,exogenous NADPH blocked the effects of TIGAR knockdown in neonatal HIBD in vivo and in vitro.These findings show that TIGAR can inhibit microglial pyroptosis and play a protective role in neonatal HIBD.The study was approved by the Animal Ethics Committee of Soochow University of China(approval No.2017LW003)in 2017.展开更多
基金supported by the Natural Science Foundation of China (30930035 and 81271459)a "973" project from the Ministry of Science and Technology of China (2011CB51000)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutes (PAPD)the Graduate Education Innovation Project of Jiangsu Province (CXZZ12_0850)
文摘In previous studies,we showed that TP53-induced glycolysis and apoptosis regulator(TIGAR) protects neurons against ischemic brain injury.In the present study,we investigated the developmental changes of TIGAR level in mouse brain and the correlation of TIGAR expression with the vulnerability of neurons to ischemic injury.We found that the TIGAR level was high in the embryonic stage,dropped at birth,partially recovered in the early postnatal period,and then continued to decline to a lower level in early adult and aged mice.The TIGAR expression was higher after ischemia/reperfusion in mouse brain 8and 12 weeks after birth.Four-week-old mice had smaller infarct volumes,lower neurological scores,and lower mortality rates after ischemia than 8- and12-week-old mice.TIGAR expression also increased in response to oxygen glucose deprivation(OGD)/reoxygenation insult or H_2O_2 treatment in cultured primary neurons from different embryonic stages(E16 and E20).The neurons cultured from the early embryonic period had a greater resistance to OGD and oxidative insult.Higher TIGAR levels correlated with higher pentose phosphate pathway activity and less oxidative stress.Older mice and more mature neurons had more severe DNA and mitochondrial damage than younger mice and less mature neurons in response to ischemia/reperfusion or OGD/reoxygenation insult.Supplementation of cultured neurons with nicotinamide adenine dinuclectide phosphate(NADPH) significantly reduced ischemic injury.These results suggest that TIGAR expression changes during development and its expression level may be correlated with the vulnerability of neurons to ischemic injury.
基金This work was supported by the National Natural Science Foundation of China(81872891)the Guangdong Natural Science Funds for Distinguished Young Scholar(No.2019B151502016,China)+4 种基金Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01Y093,China)National Engineering and Technology Research Center for New drug Druggability Evaluation(Seed Program of Guangdong Province,2017B090903004,China)the Fundamental Research Funds for the Central Universities(No.19ykzd23,China)The Manitoba Breast Tumor Bank,a member of the Canadian Tissue Repository Network,was funded in part by the Cancer Care Manitoba Foundation(CCMF,Canada)previously the Canadian Institutes of Health Research(CIHR,PRG80155,Canada).
文摘Metabolic and epigenetic reprogramming play important roles in cancer therapeutic resistance.However,their interplays are poorly understood.We report here that elevated TIGAR(TP53-induced glycolysis and apoptosis regulator),an antioxidant and glucose metabolic regulator and a target of oncogenic histone methyltransferase NSD2(nuclear receptor binding SET domain protein 2),is mainly localized in the nucleus of therapeutic resistant tumor cells where it stimulates NSD2 expression and elevates global H3K36me2 mark.Mechanistically,TIGAR directly interacts with the antioxidant master regulator NRF2 and facilitates chromatin recruitment of NRF2,H3K4me3 methylase MLL1 and elongating Pol-II to stimulate the expression of both new(NSD2)and established(NQO1/2,PRDX1 and GSTM4)targets of NRF2,independent of its enzymatic activity.Nuclear TIGAR confers cancer cell resistance to chemotherapy and hormonal therapy in vitro and in tumors through effective maintenance of redox homeostasis.In addition,nuclear accumulation of TIGAR is positively associated with NSD2 expression in clinical tumors and strongly correlated with poor survival.These findings define a nuclear TIGAR-mediated epigenetic autoregulatory loop in redox rebalance for tumor therapeutic resistance.
基金supported by the National Natural Science Foundation of China,Nos.81872845(to ML),81771625(to XF)the Natural Science Foundation of Jiangsu Province of China,No.BK20180207(to ML)+4 种基金Jiangsu Provincial Medical Youth Talent of China,No.QNRC2016762(to ML)the Pediatric Clinical Center of Suzhou City of China,No.Szzx201504(to XF)Postgraduate Research&Practice Innovation Program of Jiangsu Province of China,No.KYCX19_1998(to LLT)Jiangsu Government Scholarship for Overseas Studies of China,No.JS-2017-127(to ML)the Fifth Batch of Gusu Health Talent Plan of China(to ML).
文摘Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator(TIGAR)can protect neurons after cerebral ischemia/reperfusion.However,the role of TIGAR in neonatal hypoxic-ischemic brain damage(HIBD)remains unknown.In the present study,7-day-old Sprague-Dawley rat models of HIBD were established by permanent occlusion of the left common carotid artery followed by 2-hour hypoxia.At 6 days before induction of HIBD,a lentiviral vector containing short hairpin RNA of either TIGAR or gasdermin D(LV-sh_TIGAR or LV-sh_GSDMD)was injected into the left lateral ventricle and striatum.Highly aggressively proliferating immortalized(HAPI)microglial cell models of in vitro HIBD were established by 2-hour oxygen/glucose deprivation followed by 24-hour reoxygenation.Three days before in vitro HIBD induction,HAPI microglial cells were transfected with LV-sh_TIGAR or LV-sh_GSDMD.Our results showed that TIGAR expression was increased in the neonatal rat cortex after HIBD and in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation.Lentivirusmediated TIGAR knockdown in rats markedly worsened pyroptosis and brain damage after hypoxia/ischemia in vivo and in vitro.Application of exogenous nicotinamide adenine dinucleotide phosphate(NADPH)increased the NADPH level and the glutathione/oxidized glutathione ratio and decreased reactive oxygen species levels in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation.Additionally,exogenous NADPH blocked the effects of TIGAR knockdown in neonatal HIBD in vivo and in vitro.These findings show that TIGAR can inhibit microglial pyroptosis and play a protective role in neonatal HIBD.The study was approved by the Animal Ethics Committee of Soochow University of China(approval No.2017LW003)in 2017.