The utilization of coalbed methane(CBM)cannot only alleviate the energy crisis,but also reduce greenhouse gas emissions.Gas injection is an effective method to enhance CBM recovery.Compared to single-gas injection,the...The utilization of coalbed methane(CBM)cannot only alleviate the energy crisis,but also reduce greenhouse gas emissions.Gas injection is an effective method to enhance CBM recovery.Compared to single-gas injection,the injection of CO_(2)/N_(2) mixtures can balance the sharp decline in permeability caused by pure CO_(2) and the premature breakthrough by pure N_(2).In this study,a more comprehensive thermo-hydro-mechanical(THM)coupled mathematical model was developed,incorporating processes such as ternary gas non-isothermal adsorption,gas dissolution in water,gas-water two-phase flow,energy exchange,and coal deformation.After experimental validation,the model was applied to simulate the entire process of gas mixtures for enhanced CBM recovery(GM-ECBM).Results indicate that the permeability near the production well(Pw)initially decreases due to increased effective stress,then increases as a result of CH_(4) desorption.Near the injection well(Iw),the permeability first increases due to reduced effective stress and later stabilizes under the combined effects of effective stress and CO_(2)/N_(2) adsorption.The initial CH_(4) pressure and coal seam permeability have the most significant impact on CH_(4) production,while the coal seam permeability and temperature significantly affect CO_(2)/N_(2) injection.As the coal seam permeability increases,the optimal CO_(2)/N_(2) ratio also increases accordingly.These findings provide important theoretical guidance for improving GM-ECBM efficiency in coal seams with varying permeabilities.展开更多
This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening aft...This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening after peak strength, anisotropy of stiffness and strength, as well as permeability variation due to damage. In addition, the mechanical properties are coupled with thermal phenomena and accumulated plastic strains. The adopted nonlocal and viscoplastic approaches enhance numerical efficiency and provide the possibility to simulate localization phenomena. The model is validated against experimental data from laboratory tests conducted on Callovo-Oxfordian (COx) claystone samples that are initially unsaturated and under suction. The tests include a thermal phase where the COx specimens are subjected to different temperature increases. A good agreement with experimental data is obtained. In addition, parametric analyses are carried out to investigate the influence of the hydraulic boundary conditions (B.C.) and post-failure behavior models on the THM behavior evolution. It is shown that different drainage conditions affect the thermally induced pore pressures that, in turn, influence the onset of softening. The constitutive model presented constitutes a promising approach for simulating the most important features of the THM behavior of clay rocks. It is a tool with a high potential for application to several relevant case studies, such as thermal fracturing analysis of nuclear waste disposal systems.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52174117)the Universitylocal Government Scientific and Technical Cooperation Cultivation Project of Ordos Institute-LNTU(Grant No.YJY-XD-2024-A-009)+2 种基金the Basic Scientific Research Project of Liaoning Provincial Department of Education(Grant No.JYTZD2023073)the Liaoning Revitalization Talents Program(XLYC2203139)the Liaoning Provincial Natural Science Foundation Program(Excellent Youth Fund)(Grant No.2024JH3/10200043).
文摘The utilization of coalbed methane(CBM)cannot only alleviate the energy crisis,but also reduce greenhouse gas emissions.Gas injection is an effective method to enhance CBM recovery.Compared to single-gas injection,the injection of CO_(2)/N_(2) mixtures can balance the sharp decline in permeability caused by pure CO_(2) and the premature breakthrough by pure N_(2).In this study,a more comprehensive thermo-hydro-mechanical(THM)coupled mathematical model was developed,incorporating processes such as ternary gas non-isothermal adsorption,gas dissolution in water,gas-water two-phase flow,energy exchange,and coal deformation.After experimental validation,the model was applied to simulate the entire process of gas mixtures for enhanced CBM recovery(GM-ECBM).Results indicate that the permeability near the production well(Pw)initially decreases due to increased effective stress,then increases as a result of CH_(4) desorption.Near the injection well(Iw),the permeability first increases due to reduced effective stress and later stabilizes under the combined effects of effective stress and CO_(2)/N_(2) adsorption.The initial CH_(4) pressure and coal seam permeability have the most significant impact on CH_(4) production,while the coal seam permeability and temperature significantly affect CO_(2)/N_(2) injection.As the coal seam permeability increases,the optimal CO_(2)/N_(2) ratio also increases accordingly.These findings provide important theoretical guidance for improving GM-ECBM efficiency in coal seams with varying permeabilities.
基金funded by the European Union's Horizon 2020 research and innovation programme under a grant agreement (Grant No.847593)partially supported by the Fundamental Research Funds for the Central Universities (Grant No.22120240029).
文摘This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening after peak strength, anisotropy of stiffness and strength, as well as permeability variation due to damage. In addition, the mechanical properties are coupled with thermal phenomena and accumulated plastic strains. The adopted nonlocal and viscoplastic approaches enhance numerical efficiency and provide the possibility to simulate localization phenomena. The model is validated against experimental data from laboratory tests conducted on Callovo-Oxfordian (COx) claystone samples that are initially unsaturated and under suction. The tests include a thermal phase where the COx specimens are subjected to different temperature increases. A good agreement with experimental data is obtained. In addition, parametric analyses are carried out to investigate the influence of the hydraulic boundary conditions (B.C.) and post-failure behavior models on the THM behavior evolution. It is shown that different drainage conditions affect the thermally induced pore pressures that, in turn, influence the onset of softening. The constitutive model presented constitutes a promising approach for simulating the most important features of the THM behavior of clay rocks. It is a tool with a high potential for application to several relevant case studies, such as thermal fracturing analysis of nuclear waste disposal systems.