期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
Microstructure evolution and its influence on thermoplasticity of wide and thick continuous casting slab with heavy reduction 被引量:2
1
作者 Tian-ci Chen Xin Hu +2 位作者 Tan Zhao Cheng Ji Miao-yong Zhu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第9期2196-2206,共11页
After the heavy reduction(HR)process was carried out at the solidification end of the continuous casting slab,the austenite grains were refined by recrystallization,which improved the thermoplasticity of the slab.Howe... After the heavy reduction(HR)process was carried out at the solidification end of the continuous casting slab,the austenite grains were refined by recrystallization,which improved the thermoplasticity of the slab.However,the reduction in deformation during the HR process initiated stress concentration at the slab surface,and the crack risk increased.To effectively evaluate the risk of slab surface cracks under these complex conditions,the effect of the HR on the austenite recrystallization and thermoplasticity of a microalloyed slab surface was investigated by 15-pass reduction thermal simulation according to the wide and thick slab continuous casting process.The softening fraction was introduced as a global internal variable to quantitatively analyze various recrystallized re-refined grains.After the critical strain reaches the critical strain of dynamic recrystallization,a variety of recrystallization modes alternately occur.Among them,the contribution rate of dynamic crystallization to the later refinement reaches more than 50%.The contribution rates of static recrystallization and metadynamic recrystallization to grain refinement are almost the same.The thermoplasticity of the slab surface first increases and then decreases with increasing reduction pass.It was verified by transmission electron microscopy that the main reason for the decrease in thermoplasticity is that the dislocation multiplication rate increases,resulting in a sharp increase in stress and a decrease in thermoplasticity. 展开更多
关键词 Solidification end reduction Continuous casting Wide and thick slab Austenite recrystallization thermoplasticity
原文传递
Acetylation of Chinese bamboo flour and thermoplasticity 被引量:6
2
作者 李雪芳 陈钦慧 +2 位作者 林金火 卓东贤 吴秀玲 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第1期69-71,共3页
Chinese bamboo flour was chemically modified by acetylation with acetic anhydride by using trichloroacetic acid as an activation agent and the optimized condition for acetylation of bamboo flour was determined as the ... Chinese bamboo flour was chemically modified by acetylation with acetic anhydride by using trichloroacetic acid as an activation agent and the optimized condition for acetylation of bamboo flour was determined as the trichloroacetic acid amount 6.0 g per 1.5-g bamboo flour, ultrasosonication duration 40 min and the reaction time 1 h at 65℃. The composition, microstructure and thermal behavior of acetylated bamboo flour were preliminarily characterized by FT-IR, DSC and SEM etc. The acetylated bamboo flour can be molded into sheets at 130℃ and 10 MPa, indicating the modified bamboo flour possesses thermalplastic performance. 展开更多
关键词 ACETYLATION thermoplasticity bamboo flour modification trichloroacetic acid
在线阅读 下载PDF
Infuence of Mg on Thermoplasticity of High-Temperature Stainless Bearing Steel Cr_(14)Mo_4
3
作者 Wei Gong Cheng Wang +1 位作者 Haidong Wang Zhouhua Jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第12期1204-1208,共5页
Through the addition of appropriate amount of Mg (0.01-0.01 5 wt%) to the stainless bearing steel Cr14Mo4, the high-temperature thermoplasticity of steel was improved. The mechanism has been uncovered that the added... Through the addition of appropriate amount of Mg (0.01-0.01 5 wt%) to the stainless bearing steel Cr14Mo4, the high-temperature thermoplasticity of steel was improved. The mechanism has been uncovered that the added Mg plays an important role in refining and uniforming the carbide precipitations in the steel. It has been found that the segregation of trace Mg is the key to improve the dispersed carbide. Moreover, considerable segregation of Mg in steel during annealing was evidenced by the theoretic analysis. 展开更多
关键词 High-temperature stainless bearing steel MAGNESIUM thermoplasticity
原文传递
Bioinspired Ultrasensitive Flexible Strain Sensors for Real‑Time Wireless Detection of Liquid Leakage
4
作者 Weilong Zhou Yu Du +6 位作者 Yingying Chen Congyuan Zhang Xiaowei Ning Heng Xie Ting Wu Jinlian Hu Jinping Qu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期310-327,共18页
Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic ... Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) hasbeen developed using a combination of micro-extrusion compression molding andsurface modification for real-time wireless detection of liquid leakage. The TCGSutilizes the synergistic effects of Archimedean spiral crack arrays and micropores,which are inspired by the remarkable sensory capabilities of scorpions. This designachieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability bywithstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability indetecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositionswhile issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenariosin everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effectivesolution for the early wireless detection of liquid leakage. 展开更多
关键词 Thermoplastic polyurethane BIOINSPIRED Cracks Liquid leakage Flexible strain sensor
在线阅读 下载PDF
Structural and Mechanical Properties of Bio-Sourced Thermoplastic Materials from Flax and Fatty Acids
5
作者 Prabu Satria Sejati Adrien Magne +6 位作者 Luke Froment Jennifer Afrim Alexandre Maenhaut Julie Maillet Firmin Obounou Akong Frédéric Fradet Philippe Gérardin 《Journal of Renewable Materials》 2025年第3期539-552,共14页
Bio-based thermoplastic film from flax fiber and fatty acid(FA)was obtained using trifluoroacetic anhydride(TFAA)as an impelling agent.Different quantities of TFAA/FA,size of flax fiber,and fatty acids were applied to... Bio-based thermoplastic film from flax fiber and fatty acid(FA)was obtained using trifluoroacetic anhydride(TFAA)as an impelling agent.Different quantities of TFAA/FA,size of flax fiber,and fatty acids were applied to investigate chemical structure in relation to the mechanical properties.Decreasing the quantity of TFAA/FA by almost half from 1:4 to 1:2.5(flax to TFAA/FA)only reduces by 22%the weight percent gain(WPG)and ester content and reducing flax fiber size slightly increases the WPG and ester content.All the treatments showed sig-nificant chemical structure modification,observed by FTIR and solid CP/MAS^(13)C NMR,confirming the presence of carbonyl ester groups and alkyl chains,in relatively similar intensities.The crystallinity index(CrI)of esterified flax was evaluated by comparing the signal of solid CP/MAS^(13)C NMR in crystalline and amorphous regions and CrI was higher in esterified flax using a lower quantity of reagent and longer fatty acid.Esterified flax in a high quantity of reagent showed ductile or flexible behavior.Decreasing the reagent to 1:2.5 significantly increases the tensile strength and Young’s modulus,and decreases the elongation at break,presenting more brittle and stiff material.Using flax fiber in the original size results in slightly higher tensile strength and Young’s modulus and slightly lower elongation than milled flax.The tensile strength and Young’s modulus of stearic acid esterified flax obtained in this research were higher than myristic acid and comparable to the polyethylene plastics-LDPE and HDPE. 展开更多
关键词 THERMOPLASTIC FLAX ESTERIFICATION chemical properties mechanical properties
在线阅读 下载PDF
FDM - 3D printing of thermoplastic composites with high energetic solids content designed for gun propellants
6
作者 Marin Alexandru Ovidiu George Iorga +8 位作者 Gabriela Toader Cristiana Epure Mihail Munteanu Adrian Nicolae Rotariu Marius Marmureanu Gabriel Flavius Noja Aurel Diacon Tudor Viorel Tiganescu Florin Marian Dirloman 《Defence Technology(防务技术)》 2025年第7期165-179,共15页
This study represents an important step forward in the domain of additive manufacturing of energetic materials.It presents the successful formulation and fabrication by 3D printing of gun propellants using Fused Depos... This study represents an important step forward in the domain of additive manufacturing of energetic materials.It presents the successful formulation and fabrication by 3D printing of gun propellants using Fused Deposition Modeling(FDM)technology,highlighting the immense potential of this innovative approach.The use of FDM additive manufacturing technology to print gun propellants is a significant advancement due to its novel application in this field,which has not been previously reported.Through this study,the potential of FDM 3D-printing in the production of high-performance energetic composites is demonstrated,and also a new standard for manufacturability in this field can be established.The thermoplastic composites developed in this study are characterized by a notably high energetic solids content,comprising 70%hexogen(RDX)and 10%nitrocellulose(NC),which surpasses the conventional limit of 60%energetic solids typically achieved in stereolithography and light-curing 3D printing methods.The primary objective of the study was to optimize the formulation,enhance performance,and establish an equilibrium between printability and propellant efficacy.Among the three energetic for-mulations developed for 3D printing feedstock,only two were suitable for printing via the FDM tech-nique.Notably,the formulation consisting of 70%RDX,10%NC,and 20%polycaprolactone(PCL)emerged as the most advantageous option for gun propellants,owing to its exceptional processability,ease of printability,and high energetic performance. 展开更多
关键词 Propellants FDM 3D-printing EXPLOSIVE RDX Thermoplastic energetic composite Additive manufacturing
在线阅读 下载PDF
Manufacturing a Biodegradable Container for Planting Plants Based on an InnovativeWood-Polymer Composite
7
作者 Ksenia Anikeeva Ruslan Safin 《Journal of Renewable Materials》 2025年第11期2235-2252,共18页
The use of wood-polymer composites(WPC)based on a polymer matrix and wood filler is a modern,environmentally friendly direction in material science.However,untreated wood filler exhibits poor adhesion to hydrophobic p... The use of wood-polymer composites(WPC)based on a polymer matrix and wood filler is a modern,environmentally friendly direction in material science.However,untreated wood filler exhibits poor adhesion to hydrophobic polymers due to its hydrophilic lignocellulose fibers.To address this,ozone treatment is employed to enhance compatibility,reduce water absorption,and regulate biodegradation rates.This study investigates the hypothesis that ozone modification of wood filler improves adhesion to thermoplastic starch,thereby enhancing the physico-mechanical properties and controlled biodegradation of WPCs under compost conditions.A compre-hensive analysis was conducted on composites containing untreated and ozonated wood flour,focusing on tensile strength,bending resistance,impact strength,and biodegradation kinetics.Results showed significant improvements in mechanical properties for modified composites:tensile strength increased by 20%-25%,bending resistance by 15%-30%,and impact strength by 15%-20% compared to untreated samples.The optimal composition identified contained 70% ozonated wood flour and 30% thermoplastic starch(70WF/30P),demonstrating excellent mechanical strength(flexural strength of 18-22MPa),complete biodegradation within 140 days,and operational stability.The study revealed correlations between surface modification,interphase interaction,and biodegradation kinetics,advancing fundamental knowledge of lignocellulosic filler modification methods.These findings are crucial for developing eco-friendly composite materials with applications in biodegradable packaging and agricultural products,offering both scientific insights and practical solutions for sustainable material development. 展开更多
关键词 BIOCOMPOSITES mechanical properties thermoplastic starch wood flour
在线阅读 下载PDF
Body Temperature Programmable Shape Memory Thermoplastic Rubber
8
作者 Taoxi Wang Zhuo Liu +5 位作者 Fu Jian Xing Shen Chen Wang Huwei Bian Tao Jiang Wei Min Huang 《Journal of Polymer Materials》 2025年第1期81-94,共14页
This paper presents the development of a thermoplastic shape memory rubber that can be programmed at human body temperature for comfortable fitting applications.We hybridized commercially available thermoplastic rubbe... This paper presents the development of a thermoplastic shape memory rubber that can be programmed at human body temperature for comfortable fitting applications.We hybridized commercially available thermoplastic rubber(TPR)used in the footwear industry with un-crosslinked polycaprolactone(PCL)to create two samples,namely TP6040 and TP7030.The shape memory behavior,elasticity,and thermo-mechanical response of these rubbers were systematically investigated.The experimental results demonstrated outstanding shape memory performance,with both samples achieving shape fixity ratios(Rf)and shape recovery ratios(R_(r))exceeding 94%.TP6040 exhibited a fitting time of 80 s at body temperature(37℃),indicating a rapid response for shape fixing.The materials also showed good elasticity before and after programming,which is crucial for comfort fitting.These findings suggest that the developed shape memory thermoplastic rubber has potential applications in personalized comfort fitting products,offering advantages over traditional customization techniques in terms of efficiency and cost-effectiveness. 展开更多
关键词 Thermoplastic rubber POLYCAPROLACTONE shape memory polymers body temperature programmable comfort fitting
在线阅读 下载PDF
SafeAmpCase:design and optimization of a 3D-printed solution for protecting fragile life-saving drug ampoules
9
作者 Noa Kadosh Sahar Halevi +5 位作者 Itamar Tulpan Shlomi Digorker Sivan Hazan Itzhak Halevy Oren Wacht Galit Katarivas Levy 《Bio-Design and Manufacturing》 2025年第5期819-834,I0063-I0066,共20页
The SafeAmpCase is an innovative 3D-printed solution developed to address critical challenges in transporting and storing fragile glass drug ampoules during emergencies.This study employs a multidisciplinary approach... The SafeAmpCase is an innovative 3D-printed solution developed to address critical challenges in transporting and storing fragile glass drug ampoules during emergencies.This study employs a multidisciplinary approach—integrating biomedical engineering,advanced materials science,and emergency medicine expertise—to develop a compact,durable,and user-friendly ampoule case.A key innovation lies in the strategic selection of thermoplastic polyurethane(TPU)as the material,leveraging its superior impact resistance,flexibility,and noise-damping characteristics to ensure reliability under performance in demanding real-world conditions.To optimize the 3D printing process,key parameters,including printing temperature(220-250℃),volumetric flow rate(3-20 mm^(3)/s),retraction speed(30-90 mm/s),and retraction length(0.4-1.2 mm),were systematically adjusted using calibration models.The final optimized parameters(245℃,7 mm^(3)/s,90 mm/s,and 1.2 mm)reduced production time by 43%while preserving structural integrity.American Society for Testing and Materials(ASTM)international standard drop tests confirmed the case’s exceptional impact resistance,demonstrating a 90%reduction in ampoule breakage compared to polylactic acid plus.Further refinements,guided by feedback from 25 emergency professionals,resulted in medicationspecific color coding and an enhanced locking mechanism for usability in high-pressure situations.The final SafeAmpCase model withstood 18 consecutive drop trials without ampoule breakage,confirming its robustness in field conditions.This research underscores the transformative potential of additive manufacturing in developing customized,high-performance solutions for critical healthcare applications,setting a new benchmark for biomedical device design and rapid prototyping. 展开更多
关键词 3D printing Optimization of printing parameters Fragile life-saving drug ampoules Rapid prototyping Thermoplastic polyurethane Material selection
在线阅读 下载PDF
基于LFt-D模压技术的长纤维增强热塑性复合材料建筑模板成型工艺研究
10
作者 胡铭珊 《模具技术》 2025年第4期48-55,共8页
为保证长纤维增强热塑性复合材料建筑模板成型质量,基于LFt-D(long fiber thermoplastic direct)模压技术,对长纤维增强热塑性复合材料建筑模板成型工艺展开研究。确定长纤维增强热塑性复合材料建筑模板原材料,分析LFt-D模压技术的工艺... 为保证长纤维增强热塑性复合材料建筑模板成型质量,基于LFt-D(long fiber thermoplastic direct)模压技术,对长纤维增强热塑性复合材料建筑模板成型工艺展开研究。确定长纤维增强热塑性复合材料建筑模板原材料,分析LFt-D模压技术的工艺流程和应用优势后,分析LFt-D模压技术的工艺影响因素,并计算机该技术的相关工艺参数;选择合适的LFt-D模压加工设备,制作尺寸相同的3种不同工艺参数的建筑模板试件(S1~S3);通过扫描电子显微镜分析试件的纤维平均长度,采用差示扫描量热法计算结晶度,使用万能试验机测试力学性能,分析各个试件的应用性能情况;采用正交试验法进行测试,最终确定最佳的长纤维增强热塑性复合材料建筑模板成型工艺参数分别为:模压压力5000 kN,模具温度100℃,保压时间40 s。测试结果显示:在最优参数下,可有效减少建筑模板的翘曲变形程度,提升建筑模板成型质量。 展开更多
关键词 LFt-D(long fiber thermoplastic direct)模压技术 长纤维 增强热塑性 复合材料 建筑模板 成型工艺
在线阅读 下载PDF
Advanced Poly(Lactic Acid)/Thermoplastic Polyurethane Blend-Based Nanocomposites with Carbon Nanotubes and Graphene Nanoplatelets for Shape Memory
11
作者 Nayara Koba de Moura Morgado Guilherme Ferreira de Melo Morgado +1 位作者 Erick Gabriel Ribeiro dos Anjos Fabio Roberto Passador 《Journal of Polymer Materials》 2025年第1期95-110,共16页
The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved ... The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved to incorporate smart materials capable of responding to various stimuli.This study explores the potential of thermoresponsive sutures,made from shape memory materials,that contract upon heating to bring loose stitches closer together,promoting optimal wound closure.We developed nanocomposites based on a blend of poly(lactic acid)(PLA)and thermoplastic polyurethane(TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes(CNT)and graphene nanoplatelets(GN)to improve mechanical performance.PLA/TPU(50/50)nanocomposites were prepared with 1 and 2 wt%GN,as well as hybrid formulations combining 1 wt%CNT with 1 or 2 wt%GN,using a twin-screw extrusion process to form filaments.These filaments were characterized through differential scanning calorimetry(DSC),field emission gun scanning electron microscopy(FEG-SEM),tensile testing,and shape memory assessments.While the PLA/TPU blend is immiscible,TPU enhances the crystallinity(X_(c))of the PLA phase,further increased by the addition of CNT and GN.FEG-SEM images indicate CNTs primarily in the PLA phase and GN in the TPU phase.PLA/TPU with 1 or 2 wt%GN showed the highest potential for suture applications,with a high elastic modulus(~1000 MPa),significant strain at break(~10%),and effective shape recovery(~20%at 55℃ for 30 min).These findings suggest that these nanocomposites can enhance suture performance with controlled shape recovery that is suitable for medical use. 展开更多
关键词 Shape memory polymers poly(lactic acid)(PLA) thermoplastic polyurethane(TPU) carbon nanotubes(CNT) graphene nanoplatelets(GN)
在线阅读 下载PDF
3D Printing of Thermoplastic Composite Truss Structures in High-Low Temperature Vacuum Environments:Effects of Printing Speed and Structural Geometry on Forming Accuracy and Mechanical Performance
12
作者 Jianing He Fuji Wang +5 位作者 Qi Wang Jiayuan Zhang Hongquan Wang Zhenyuan Jia Gongshuo Wang Yun Shi 《Additive Manufacturing Frontiers》 2025年第3期92-102,共11页
The z-axis-inclined 3D printing process using short carbon fiber-reinforced thermoplastic composites offers the potential for the support-free fabrication of complex structures and theoretically unlimited extension of... The z-axis-inclined 3D printing process using short carbon fiber-reinforced thermoplastic composites offers the potential for the support-free fabrication of complex structures and theoretically unlimited extension of printed components.It has emerged as a promising approach for in-orbit manufacturing of high-performance thermoplastic composite truss structures.However,extreme conditions of the space environment,such as high vacuum and fluctuating high-low temperatures,significantly alter the heat-transfer behavior during the printing process,often resulting in dimensional inaccuracies and degraded mechanical performance.Existing process optimization strategies fail to account for the coupled effects of vacuum and thermal extremes,limiting their applicability in guiding process design under varying vacuum temperature conditions.To address this gap,this study establishes a truss3D printing experimental platform with in situ temperature-monitoring capability under ground-simulated space conditions.It systematically investigates the effects of printing speed and structural geometry on the pre-bonding surface temperature and forming quality of truss structures in high-low temperature vacuum environments.This study reveals the mechanism by which processing and structural parameters affect the component performance through their influence on the pre-bonding surface temperature and dimensional accuracy.The experimental results show that under high-temperature vacuum conditions,the pre-bonding surface temperature is relatively high,resulting in good interfacial bonding.However,increasing the printing speed reduces the forming accuracy and leads to a decline in mechanical performance.In contrast,under low-temperature vacuum conditions,where the pre-bonding surface temperatures are lower,increasing the printing speed within a specific range effectively increases the surface temperature and bonding quality,thereby improving mechanical properties.Additionally,owing to frequent path transitions,the diagonal-strut truss exhibits a lower forming accuracy and pre-bonding surface temperature than the infilling truss,resulting in inferior mechanical performance in high-low temperature vacuum environments. 展开更多
关键词 Short carbon-fiber-reinforced thermoplastic composites(S/C-CFRTPs) 3D printing High and low temperatures under vacuum Forming accuracy Compressive strength
在线阅读 下载PDF
A Comparative Study on the Post-Buckling Behavior of Reinforced Thermoplastic Pipes(RTPs)Under External Pressure Considering Progressive Failure 被引量:2
13
作者 DING Xin-dong WANG Shu-qing +1 位作者 LIU Wen-cheng YE Xiao-han 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期233-246,共14页
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ... The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed. 展开更多
关键词 reinforced thermoplastic pipes post-buckling behavior progressive failure of composites DEBONDING initial ovality
在线阅读 下载PDF
Synthesis of Organic-Inorganic Hybrid Aluminum Hypophosphite Microspheres Flame Retardant and Its Flame Retardant Research on Thermoplastic Polyurethane 被引量:1
14
作者 刘生鹏 XU Zhi +5 位作者 ZHANG Xinyuan WEI Huan XIONG Yun DING Yigang HUANG Wenbo 许莉莉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期221-233,共13页
Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of... Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites. 展开更多
关键词 POLYPHOSPHAZENE thermoplastic polyurethane flame retardancy aluminum hypophosphite surface polymerization
原文传递
Sustainable, thermoplastic and hydrophobic coating from natural cellulose and cinnamon to fabricate eco-friendly catering packaging 被引量:1
15
作者 Rumeng Xu Chunchun Yin +4 位作者 Jingxuan You Jinming Zhang Qinyong Mi Jin Wu Jun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期927-936,共10页
Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and ... Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes. 展开更多
关键词 Thermoplastic coating Bio-degradable adhesive Natural products Cellulose Eco-friendly packaging
在线阅读 下载PDF
An in-situ hybrid laser-induced integrated sensor system with antioxidative copper 被引量:3
16
作者 Kaichen Xu Zimo Cai +5 位作者 Huayu Luo Xingyu Lin Geng Yang Haibo Xie Seung Hwan Ko Huayong Yang 《International Journal of Extreme Manufacturing》 CSCD 2024年第6期535-546,共12页
Integration of sensors with engineering thermoplastics allows to track their health and surrounding stimuli.As one of vital backbones to construct sensor systems,copper(Cu)is highly conductive and cost-effective,yet t... Integration of sensors with engineering thermoplastics allows to track their health and surrounding stimuli.As one of vital backbones to construct sensor systems,copper(Cu)is highly conductive and cost-effective,yet tends to easily oxidize during and after processing.Herein,an in-situ integrated sensor system on engineering thermoplastics via hybrid laser direct writing is proposed,which primarily consists of laser-passivated functional Cu interconnects and laser-induced carbon-based sensors.Through a one-step photothermal treatment,the resulting functional Cu interconnects after reductive sintering and passivation are capable of resisting long-term oxidation failure at high temperatures(up to 170℃)without additional encapsulations.Interfacing with signal processing units,such an all-in-one system is applied for long-term and real-time temperature monitoring.This integrated sensor system with facile laser manufacturing strategies holds potentials for health monitoring and fault diagnosis of advanced equipment such as aircrafts,automobiles,high-speed trains,and medical devices. 展开更多
关键词 hybrid laser direct writing in-situ integrated sensor systems engineering thermoplastics functional copper inks laser-induced passivation
在线阅读 下载PDF
Recycling of flame retardant polymers:Current technologies and future perspectives 被引量:2
17
作者 Aurelio Bifulco Jiuke Chen +3 位作者 Arvindh Sekar Wenyu Wu Klingler Ali Gooneie Sabyasachi Gaan 《Journal of Materials Science & Technology》 CSCD 2024年第32期156-183,共28页
Polymers are indispensable to humans in different applications due to their ease of manufacturing and overall performance.However,after a material lifetime,there is a large amount of polymer-based waste,which greatly ... Polymers are indispensable to humans in different applications due to their ease of manufacturing and overall performance.However,after a material lifetime,there is a large amount of polymer-based waste,which greatly contributes to the loss of valuable resources and environmental pollution.Thermoplastics may be readily recycled,but because of their flammability,large amounts of flame retardant(FR)ad-ditives are required for many applications.This results in a significant volume of FR polymeric wastes too,particularly halogenated plastics,which are subject to severe recycling regulations.In general,ther-moplastics containing FRs are raising concerns,as their effective recycling is strongly influenced by the chemical composition,additive content,and physicochemical characteristics of the waste stream.The recycling of FR thermosets is even more challenging due to their crosslinked and cured nature,which makes them resistant to melting and reprocessing.In many cases,traditional mechanical recycling meth-ods,such as grinding and melting,are not applicable to thermosetting polymers.Current recycling meth-ods do not always consider the recovery of the thermosetting/thermoplastic matrix and the presence of toxic FRs in the polymer network.Sorting and solvent washing treatment are important steps,which are usually performed before recycling the FR polymeric waste to reduce contamination in the following steps. 展开更多
关键词 THERMOSETS Thermoplastics Flame retardant RECYCLING Covalent adaptable networks SUSTAINABILITY
原文传递
Viscoelastic Property Evolution of Thermoplastic Polyurethane during Annealing Treatment and Its Correlation with Segmental Crystallization
18
作者 Jian-Wen Shan Yan-Bo Zhu +1 位作者 Ling-Ling Ni Peng-Ju Pan 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第12期1976-1985,I0010,共11页
Viscoelastic properties of thermoplastic polyurethane(TPU)is of fundamental importance for its processing.In this work,we prepared different TPUs from polycaprolactone(PCL)diol,diphenylmethane-4,4′-diisocyanate(MDI),... Viscoelastic properties of thermoplastic polyurethane(TPU)is of fundamental importance for its processing.In this work,we prepared different TPUs from polycaprolactone(PCL)diol,diphenylmethane-4,4′-diisocyanate(MDI),and 1,4-butanediol(BDO),and investigated the viscoelastic behavior of three TPUs with different hard segment content during thermal annealing process.The storage modulus(G′)of TPU increases over time in a medium annealing temperature(T_(a))region,but remains unchanged at both high and low temperature regions.The growth of loss modulus(G″)over time is slower than that of G′.At medium T_(a),both G′and G″increase during the repeating frequency(ω)sweep,due to the gradual crystallization of hard segments.This indicates that the crystallites primarily restrain the relaxation of unit with large size.The increments of G′and G″are weakened when the content of hard segment in TPU is decreased.For TPU with high content of hard segments,a complete high elastic platform with a width of 3 orders of magnitude was observed only through one frequency scan test at medium T_(a).In addition,the crystallites of hard segments grow up continuously during frequency scan test(isothermal annealing treatment)and cause the extreme increase in G′and G″withωin lowωregion. 展开更多
关键词 Thermoplastic polyurethane Viscoelastic properties ANNEALING Crystalization
原文传递
Chain Extender-induced Hydrogen Bonding Organization Determines the Morphology and Properties of Thermoplastic Polycarbonate Polyurethane
19
作者 Yi-Lang Qin Ping Zhu +1 位作者 Chen-Xi Ouyang Xia Dong 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第1期87-96,I0009,共11页
Thermoplastic polycarbonate polyurethanes(PCUs) are multiblock copolymers that have been applied for medical devices for long time. Aliphatic diols are common chain extenders(CE) involved in the composition of the har... Thermoplastic polycarbonate polyurethanes(PCUs) are multiblock copolymers that have been applied for medical devices for long time. Aliphatic diols are common chain extenders(CE) involved in the composition of the hard segments of PCU. However, limited knowledge was discovered about how the chemical structure of CE affects the hydrogen bonding organization within PCUs and their mechanical properties.To investigate this problem, a group of PCUs were synthesized respectively by extending the polymer chain with 1,4-butanediol(BDO),aminoethanol(MEA), ethanediol(EO) as three kinds of chain extenders. Tiny differences in the CE chemical structure results in remarkable variations in phase separation, condensed morphologies, thermal and mechanical properties, which are characterized by Fourier transform infrared spectrometer, atomic force microscopy, small-angle X-ray scattering, differential scanning calorimetry, and tensile tests. The microstructural evolution during unilateral deformation and the different mechanism induced by the different CEs was probed and unveil by in situ wide-and small-angle X-ray diffraction. Symmetry of CE can improve the organization of the hydrogen bonding. The coherence strength of the urethane/urea group also plays a key role by comparing the two PCUs with ethanediol and aminoethanol. 展开更多
关键词 Thermoplastic polycarbonate polyurethane Chain extender Hydrogen bonding Mechanical properties
原文传递
Temperature field characteristics of CF/PEEK thermoplastic composites formed by automated fiber placement using hot gas torch with slit structure nozzle
20
作者 Ziang JIN Shouzheng SUN +2 位作者 Sunil Chandrakant JOSHI Zhenyu HAN Hongya FU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期392-409,共18页
In-situ consolidation forming of high-performance thermoplastic composites by Automated Fiber Placement(AFP)is of significant interest in aerospace.During the laying process,the heating temperature has a great influen... In-situ consolidation forming of high-performance thermoplastic composites by Automated Fiber Placement(AFP)is of significant interest in aerospace.During the laying process,the heating temperature has a great influence on the quality of the formed components.A threedimensional heat transfer finite element model of Carbon Fiber(CF)/Polyether Ether Ketone(PEEK)heated by Slit Structure Nozzle Hot Gas Torch(SSNHGT)assisted AFP is proposed.The influence of gas flow rate,heat transfer distance,and laying speed on heating temperature is analysed.The results show that the overall temperature increases and then decreases as the gas flow rate increases.With the increase in heat transfer distance and laying speed,the overall temperature decreases.Meanwhile,the gas flow rate has the greatest influence on the temperature of CF/PEEK being heated,followed by the laying speed and finally the heat transfer distance.Furthermore,the model can also be extended to other fiber-reinforced polymer composites formed by hot gas torch assisted AFP,which can guide the optimization of process parameters for subsequent heating temperature control. 展开更多
关键词 Fiber reinforced plastics Thermoplastics Heating temperature Automated fiber placement CF/PEEK
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部