期刊文献+
共找到147,779篇文章
< 1 2 250 >
每页显示 20 50 100
Negative Thermal Transport and Giant Thermal Rectification Unveiled in a Periodic-Oscillating Temperature System
1
作者 Lei Zhao Yu Yang +1 位作者 Yan Zhou Lifa Zhang 《Chinese Physics Letters》 2025年第8期143-153,共11页
Thermal diodes,based on the thermal rectification effect,have demonstrated great promise for advanced thermal management.In previous studies,almost all thermal diodes were discussed under the condition of steady state... Thermal diodes,based on the thermal rectification effect,have demonstrated great promise for advanced thermal management.In previous studies,almost all thermal diodes were discussed under the condition of steady states,while the heat source of a practical thermal system often operates under dynamically fluctuating temperatures.Therefore,in this work,we employ finite element simulation to investigate transient thermal rectification behaviors in a well-built heterojunction which exhibits intrinsic thermal rectification effect under steady state.Unidirectional energy transport in the heterojunction system,decoupled from the steady-state temperature bias,is observed under a time-dependent fluctuating heat source.This phenomenon enables straightforward realization of both giant thermal rectification and negative thermal transport.Furthermore,a series of novel thermal regulation strategies are unveiled by adjusting the average temperature,frequency,and phase of the heat source.Our work not only deepens fundamental understanding of thermal regulation in time-dependent oscillating temperature systems but also uncovers many unexplored energy-saving thermal management strategies. 展开更多
关键词 thermal diodes thermal rectification effecthave thermal system intrinsic thermal recti finite element simulation advanced thermal managementin heat source thermal diodesbased
原文传递
On AlN_(P)/Mg-Zn-Cu cast composites with low expansion and high thermal conductivity
2
作者 Shu-sen Wu Lu Chen +2 位作者 Shu-lin Lü Wei Guo Jian-yu Li 《China Foundry》 2026年第1期101-107,共7页
There is an urgent need to develop magnesium-matrix materials that exhibit both high thermal conductivity and low thermal expansion to ensure compatibility with chips.This study aims to develop a Mg-Zn-Cu alloy with h... There is an urgent need to develop magnesium-matrix materials that exhibit both high thermal conductivity and low thermal expansion to ensure compatibility with chips.This study aims to develop a Mg-Zn-Cu alloy with high thermal conductivity.Furthermore,it explores the preparation of AlN_(P)/Mg-Zn-Cu composites featuring low coefficients of thermal expansion.The stir casting method was utilized to fabricate the composites and an investigation was conducted to examine their microstructure and thermal properties.Results indicate that the addition of AlN_(P)reduces the thermal expansion coefficient while maintaining relatively high thermal conductivity.Specifically,the AlN_(P)/Mg-0.5Zn-0.5Cu composite with 30wt.%AlN_(P)achieves a thermal conductivity of 132.7 W·m^(-1)·K^(-1)and a thermal expansion coefficient of 18.5×10^(-6)K^(-1),rendering it suitable for electronic packaging applications where thermal management is critical. 展开更多
关键词 thermal expansion thermal conductivity magnesium-matrix composites Mg-Zn-Cu alloy
在线阅读 下载PDF
Crystal structure,thermal analysis,and luminescence properties of six heterocyclic lanthanide complexes
3
作者 SONG Zihe ZHAO Jinjin +1 位作者 REN Ning ZHANG Jianjun 《无机化学学报》 北大核心 2026年第1期181-192,共12页
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'... Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6. 展开更多
关键词 lanthanide complexes fluorescence property crystal structure thermal analysis
在线阅读 下载PDF
Down-Top Strategy Engineered Large-Scale Fluorographene/PBO Nanofibers Composite Papers with Excellent Wave-Transparent Performance and Thermal Conductivity
4
作者 Yuhan Lin Lin Tang +4 位作者 Mingshun Jia Mukun He Junliang Zhang Yusheng Tang Junwei Gu 《Nano-Micro Letters》 2026年第1期935-951,共17页
With the miniaturization and high-frequency evolution of antennas in 5G/6G communications,aerospace,and transportation,polymer composite papers integrating superior wave-transparent performance and thermal conductivit... With the miniaturization and high-frequency evolution of antennas in 5G/6G communications,aerospace,and transportation,polymer composite papers integrating superior wave-transparent performance and thermal conductivity for radar antenna systems are urgently needed.Herein,a down-top strategy was employed to synthesize poly(p-phenylene benzobisoxazole)precursor nanofibers(prePNF).The prePNF was then uniformly mixed with fluorinated graphene(FG)to fabricate FG/PNF composite papers through consecutively suction filtration,hot-pressing,and thermal annealing.The hydroxyl and amino groups in prePNF enhanced the stability of FG/prePNF dispersion,while the increasedπ-πinteractions between PNF and FG after annealing improved their compatibility.The preparation time and cost of PNF paper was significantly reduced when applying this strategy,which enabled its large-scale production.Furthermore,the prepared FG/PNF composite papers exhibited excellent wave-transparent performance and thermal conductivity.When the mass fraction of FG was 40 wt%,the FG/PNF composite paper prepared via the down-top strategy achieved the wave-transparent coefficient(|T|2)of 96.3%under 10 GHz,in-plane thermal conductivity(λ_(∥))of 7.13 W m^(−1)K^(−1),and through-plane thermal conductivity(λ_(⊥))of 0.67 W m^(−1)K^(−1),outperforming FG/PNF composite paper prepared by the top-down strategy(|T|2=95.9%,λ_(∥)=5.52 W m^(−1)K^(−1),λ_(⊥)=0.52 W m^(−1)K^(−1))and pure PNF paper(|T|2=94.7%,λ_(∥)=3.04 W m^(−1)K^(−1),λ_(⊥)=0.24 W m^(−1)K^(−1)).Meanwhile,FG/PNF composite paper(with 40 wt%FG)through the down-top strategy also demonstrated outstanding mechanical properties with tensile strength and toughness reaching 197.4 MPa and 11.6 MJ m^(−3),respectively. 展开更多
关键词 PBO nanofibers Fluorinated graphene Wave-transparency thermal conductivity
在线阅读 下载PDF
Artificial Neural Network Model for Thermal Conductivity Estimation of Metal Oxide Water-Based Nanofluids
5
作者 Nikhil S.Mane Sheetal Kumar Dewangan +3 位作者 Sayantan Mukherjee Pradnyavati Mane Deepak Kumar Singh Ravindra Singh Saluja 《Computers, Materials & Continua》 2026年第1期316-331,共16页
The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a n... The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a necessary step before their practical application.As these investigations are time and resource-consuming undertakings,an effective prediction model can significantly improve the efficiency of research operations.In this work,an Artificial Neural Network(ANN)model is developed to predict the thermal conductivity of metal oxide water-based nanofluid.For this,a comprehensive set of 691 data points was collected from the literature.This dataset is split into training(70%),validation(15%),and testing(15%)and used to train the ANN model.The developed model is a backpropagation artificial neural network with a 4–12–1 architecture.The performance of the developed model shows high accuracy with R values above 0.90 and rapid convergence.It shows that the developed ANN model accurately predicts the thermal conductivity of nanofluids. 展开更多
关键词 Artificial neural networks nanofluids thermal conductivity PREDICTION
在线阅读 下载PDF
Thermal simulation method for researching solidification process of ductile iron pipe based on heat transfer similarity of characteristic unit of ductile iron pipe
6
作者 Gan-chao Zhai Gong-ao Zhu +4 位作者 Shao-dong Hu Bin Yang Jie-yu Zhang Xiang-ru Chen Qi-jie Zhai 《China Foundry》 2026年第1期62-72,共11页
Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presen... Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe. 展开更多
关键词 ductile iron pipe centrifugal casting thermal simulation MICROSTRUCTURE mechanical property
在线阅读 下载PDF
Superelastic and Washable Micro/Nanofibrous Sponges Based on Biomimetic Helical Fibers for Efficient Thermal Insulation
7
作者 Fengjin Yang Zhifei Wang +7 位作者 Wei Zhang Sai Wang Yi‑Tao Liu Fei Wang Roman ASurmenev Jianyong Yu Shichao Zhang Bin Ding 《Nano-Micro Letters》 2026年第2期170-182,共13页
Extreme cold weather seriously harms human thermoregulatory system,necessitating high-performance insulating garments to maintain body temperature.However,as the core insulating layer,advanced fibrous materials always... Extreme cold weather seriously harms human thermoregulatory system,necessitating high-performance insulating garments to maintain body temperature.However,as the core insulating layer,advanced fibrous materials always struggle to balance mechanical properties and thermal insulation,resulting in their inability to meet the demands for both washing resistance and personal protection.Herein,inspired by the natural spring-like structures of cucumber tendrils,a superelastic and washable micro/nanofibrous sponge(MNFS)based on biomimetic helical fibers is directly prepared utilizing multiple-jet electrospinning technology for high-performance thermal insulation.By regulating the conductivity of polyvinylidene fluoride solution,multiple-jet ejection and multiple-stage whipping of jets are achieved,and further control of phase separation rates enables the rapid solidification of jets to form spring-like helical fibers,which are directly entangled to assemble MNFS.The resulting MNFS exhibits superelasticity that can withstand large tensile strain(200%),1000 cyclic tensile or compression deformations,and retain good resilience even in liquid nitrogen(-196℃).Furthermore,the MNFS shows efficient thermal insulation with low thermal conductivity(24.85 mW m^(-1)K^(-1)),close to the value of dry air,and remains structural stability even after cyclic washing.This work offers new possibilities for advanced fibrous sponges in transportation,environmental,and energy applications. 展开更多
关键词 ELECTROSPINNING Micro/nanofibrous sponge Hierarchical structure SUPERELASTICITY thermal insulation
在线阅读 下载PDF
Thermal decomposition and kinetics of diisopropyl methylphosphonate(DIMP),a chemical warfare agent simulant
8
作者 Natalie Gese Hergen Eilers 《Defence Technology(防务技术)》 2026年第1期40-51,共12页
Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl m... Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl methylphosphonate(DIMP),a commonly used CWA surrogate,is widely studied to enhance our understanding of CWA behavior.The prevailing thermal decomposition model for DIMP,developed approximately 25 years ago,is based on data collected in nitrogen atmospheres at temperatures ranging from 700 K to 800 K.Despite its limitations,this model continues to serve as a foundation for research across various thermal and reactive environments,including combustion studies.Our recent experiments have extended the scope of decomposition analysis by examining DIMP in both nitrogen and zero air across a lower temperature range of 175??C to 250??C.Infrared spectroscopy results under nitrogen align well with the established model;however,we observed that catalytic effects,stemming from decomposition byproducts and interactions with stainless steel surfaces,alter the reaction kinetics.In zero air environments,we observed a novel infrared absorption band.Spectral fitting suggests this band may represent a combination of propanal and acetone,while GCMS analysis points to vinyl formate and acetone as possible constituents.Although the precise identity of these new products remains unresolved,our findings clearly indicate that the existing decomposition model cannot be reliably extended to lower temperatures or non-nitrogen environments without further revisions. 展开更多
关键词 Chemical warfare agents Simulants Diisopropyl methylphosphonate thermal decomposition Decomposition model PROPANAL Vinyl formate ACETONE
在线阅读 下载PDF
Nature-Inspired Upward Hanging Evaporator with Photothermal 3D Spacer Fabric for Zero-Liquid-Discharge Desalination
9
作者 Ye Peng Yang Shao +3 位作者 Longqing Zheng Haoxuan Li Meifang Zhu Zhigang Chen 《Nano-Micro Letters》 2026年第1期545-561,共17页
While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfa... While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination. 展开更多
关键词 DESALINATION Solar interfacial evaporation Biomimetic design Zero liquid discharge thermal management
在线阅读 下载PDF
Multifunctional MXene for Thermal Management in Perovskite Solar Cells
10
作者 Zhongquan Wan Runmin Wei +5 位作者 Yuanxi Wang Huaibiao Zeng Haomiao Yin Muhammad Azam Junsheng Luo Chunyang Jia 《Nano-Micro Letters》 2026年第1期458-473,共16页
Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bot... Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bottleneck,severely affecting device stability and long-term operational performance.Herein,we present a multifunctional strategy by incorporating highly thermally conductive Ti_(3)C_(2)T_(X) MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties.The Ti_(3)C_(2)T_(X) nanosheets,embedded at perovskite grain boundaries,construct efficient thermal conduction pathways,significantly improving the thermal conductivity and diffusivity of the film.This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 under 100 mW cm^(−2) illumination,thereby alleviating heat-induced performance degradation.Beyond thermal regulation,Ti_(3)C_(2)T_(X),with high conductivity and negatively charged surface terminations,also serves as an effective defect passivation agent,reducing trap-assisted recombination,while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment.As a result,the Ti_(3)C_(2)T_(X)-modified PSC achieve a champion PCE of 25.13%and exhibit outstanding thermal stability,retaining 80%of the initial PCE after 500 h of thermal aging at 85 and 30±5%relative humidity.(In contrast,control PSC retain only 58%after 200 h.)Moreover,under continuous maximum power point tracking in N2 atmosphere,Ti_(3)C_(2)T_(X)-modified PSC retained 70%of the initial PCE after 500 h,whereas the control PSC drop sharply to 20%.These findings highlight the synergistic role of Ti_(3)C_(2)T_(X) in thermal management and optoelectronic performance,paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics. 展开更多
关键词 Perovskite solar cells Heat accumulation thermal management Multifunctional MXene Defect passivation
在线阅读 下载PDF
Thermally Drawn Flexible Fiber Sensors:Principles,Materials,Structures,and Applications
11
作者 ZhaoLun Zhang Yuchang Xue +7 位作者 Pengyu Zhang Xiao Yang Xishun Wang Chunyang Wang Haisheng Chen Xinghua Zheng Xin Yin Ting Zhang 《Nano-Micro Letters》 2026年第1期95-129,共35页
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib... Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed. 展开更多
关键词 thermally drawn fiber sensors Sensing principles Temperature sensors Mechanical sensors Multifunctional sensors
在线阅读 下载PDF
Layered MXene-phase change composites for integrated photothermal regulation and electromagnetic shielding
12
作者 Teng Li Yuanjun Yang +5 位作者 Yawen Fan Danyuan Huang Li Zhang Xinpeng Hu Ying Chen Xinxin Sheng 《Nano Research》 2026年第1期655-664,共10页
Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctio... Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctional layered composite phase change materials(CPCMs)comprising alternating cellulose nanofiber/phase change capsule/sodium alginate(CNF/PCC/SA)layers and MXene/sodium alginate(MXene/SA)layers.The strong interfacial adhesion and controlled multilayer architecture enable the CPCM to achieve high electrical conductivity(up to 279.8 S/cm)and excellent EMI shielding effectiveness(up to 57.6 dB in the X-band).The layered structure enhances electromagnetic wave attenuation via multiple internal reflections and polarization losses,outperforming homogeneous composites.Moreover,the CPCMs exhibit superior light absorption(maximum nearly 100% for the optimized 5-layer structure)and efficient light-to-thermal conversion,achieving rapid temperature increases and uniform heat distribution under light irradiation.Additionally,the phase change capsules enable latent heat storage,ensuring thermal buffering and prolonged temperature regulation.This work provides novel insights into the rational design of multifunctional composites integrating wireless thermal management and EMI shielding,with promising applications in wearable electronics and smart thermal regulation. 展开更多
关键词 electromagnetic interference(EMI)shielding phase change thermal management FUNCTIONAL
原文传递
Advanced thermal-resistant aluminum conductor alloys:A comprehensive review
13
作者 Behrouz Abnar Samaneh Gashtiazar +1 位作者 Paul Rometsch Mousa Javidani 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期68-93,共26页
This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductiv... This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductivity.Particular emphasis is placed on the role of microalloying elements—particularly Sc and Zr-in promoting the formation of coherent nanoscale precipitates such as Al_(3)Zr,Al_(3)Sc,and core-shell Al_(3)(Sc,Zr)with metastable L1_(2)crystal structures.These precipitates contribute significantly to high-temperature performance by enabling precipitation strengthening and stabilizing grain boundaries.The review also explores the emerging role of other rare earth elements(REEs),such as erbium(Er),in accelerating precipitation kinetics and improving thermal stability by retarding coarsening.Additionally,recent advancements in thermomechanical processing strategies are examined,with a focus on scalable approaches to optimize the strength-conductivity balance.These approaches involve multi-step heat treatments and carefully controlled manufacturing sequences,particularly the combination of cold drawing and aging treatment to promote uniform and effective precipitation.This review offers valuable insights to guide the development of cost-effective,high-strength,heat-resistant aluminum alloys beyond conductor applications,particularly those strengthened through microalloying with Sc and Zr. 展开更多
关键词 electrical conductivity mechanical properties rare earth elements thermal stability scandium-and zirconium-containing aluminium alloy
在线阅读 下载PDF
Future directions of image-guided thermal ablation in colorectal cancer lung oligometastases
14
作者 Yu-Yin Wang Cui-Ping Zhang +3 位作者 Qing-Biao Zhang Xing-Yan Le Jun-Bang Feng Chuan-Ming Li 《World Journal of Gastroenterology》 2026年第2期162-166,共5页
Colorectal cancer(CRC)with lung oligometastases,particularly in the presence of extrapulmonary disease,poses considerable therapeutic challenges in clinical practice.We have carefully studied the multicenter study by ... Colorectal cancer(CRC)with lung oligometastases,particularly in the presence of extrapulmonary disease,poses considerable therapeutic challenges in clinical practice.We have carefully studied the multicenter study by Hu et al,which evaluated the survival outcomes of patients with metastatic CRC who received image-guided thermal ablation(IGTA).These findings provide valuable clinical evidence supporting IGTA as a feasible,minimally invasive approach and underscore the prognostic significance of metastatic distribution.However,the study by Hu et al has several limitations,including that not all pulmonary lesions were pathologically confirmed,postoperative follow-up mainly relied on dynamic contrast-enhanced computed tomography,no comparative analysis was performed with other local treatments,and the impact of other imaging features on efficacy and prognosis was not evaluated.Future studies should include complete pathological confirmation,integrate functional imaging and radiomics,and use prospective multicenter collaboration to optimize patient selection standards for IGTA treatment,strengthen its clinical evidence base,and ultimately promote individualized decision-making for patients with metastatic CRC. 展开更多
关键词 Colorectal cancer Lung oligometastases Extrapulmonary metastases Imageguided thermal ablation Dynamic contrast-enhanced computed tomography Functional imaging
暂未订购
System with Thermal Management for Synergistic Water Production,Electricity Generation and Crop Irrigation
15
作者 Meng Wang Zixiang He +7 位作者 Haixing Chang Yen Wei Shiyu Zhang Ke Wang Peng Xie Rupeng Wang Nanqi Ren Shih‑Hsin Ho 《Nano-Micro Letters》 2026年第2期539-552,共14页
Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to miti... Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF. 展开更多
关键词 thermal management Water/electricity cogeneration CULTIVATION Water–energy–food nexus Sustainable development
在线阅读 下载PDF
Non-reciprocal Synchronization in Thermal Rydberg Ensembles
16
作者 Yunlong Xue Zhengyang Bai 《Chinese Physics Letters》 2026年第1期26-30,共5页
Optical non-reciprocity is a fundamental phenomenon in photonics.It is crucial for developing devices that rely on directional signal control,such as optical isolators and circulators.However,most research in this fie... Optical non-reciprocity is a fundamental phenomenon in photonics.It is crucial for developing devices that rely on directional signal control,such as optical isolators and circulators.However,most research in this field has focused on systems in equilibrium or steady states.In this work,we demonstrate a room-temperature Rydberg atomic platform where the unidirectional propagation of light acts as a switch to mediate time-crystalline-like collective oscillations through atomic synchronization. 展开更多
关键词 atomic synchronization non reciprocal synchronization optical non reciprocity optical isolators thermal Rydberg ensembles directional signal controlsuch time crystalline oscillations unidirectional propagation light
原文传递
Room Temperature Thermal Switching Based on Monolayer Boron Nitride
17
作者 Dingbo Zhang Ke Wang +2 位作者 Shuai Chen Yuxiang Ni Gang Zhang 《Chinese Physics Letters》 2025年第9期102-125,共24页
The research on materials capable of manipulating thermal conductivity continues to fuel the development of thermal controlling devices.Here,using ab initio calculations and the Boltzmann transport equation,we demonst... The research on materials capable of manipulating thermal conductivity continues to fuel the development of thermal controlling devices.Here,using ab initio calculations and the Boltzmann transport equation,we demonstrate that the thermal conductivity of semi-fluorinated hexagonal boron nitride(h-BN)can be reversibly manipulated at 300 K,and the ratio for the regulation of thermal conductivity reaches up to 11.23.Such behavior originates from the high sensitivity of thermal conductivity to magnetic ordering.Semi-fluorinated h-BN is a paramagnetic material at room temperature due to its Curie temperature of 270 K.Impressively,semi-fluorinated h-BN can be modulated into a ferromagnetic system by adding an external magnetic field of 11.15 T,resulting in greatly and reversibly tunable thermal conductivity at room temperature.Furthermore,in-depth analyses of phonon properties show that compared with the paramagnetic phase,both ferromagnetic and antiferromagnetic semi-fluorinated h-BN significantly reduce phonon scattering and anharmonicity,thereby enhancing thermal conductivity.The results qualify semi-fluorinated h-BN as a potential candidate for thermal switching applications at room temperature. 展开更多
关键词 ab initio calculations boltzmann transport equationwe thermal controlling deviceshereusing thermal conductivity regulation thermal conductivity magnetic ordering manipulating thermal conductivity semi fluorinated hexagonal boron nitride
原文传递
Using Targeted Phonon Excitation to Modulate Thermal Conductivity of Boron Nitride
18
作者 Dongkai Pan Tianhao Li +3 位作者 Xiao Wan Zhicheng Zong Yangjun Qin Nuo Yang 《Chinese Physics Letters》 2025年第7期449-453,共5页
Recent advancements in thermal conductivity modulating strategies have shown promising enhancements to the thermal management capabilities of two-dimensional materials.In this article,both the iterative Boltzmann tran... Recent advancements in thermal conductivity modulating strategies have shown promising enhancements to the thermal management capabilities of two-dimensional materials.In this article,both the iterative Boltzmann transport equation solution and the two-temperature model were employed to investigate the efficacy of targeted phonon excitation applied to hexagonal boron nitride(hBN).The results indicate significant modifications to hBN's thermal conductivity,achieving increases of up to 30.1%as well as decreases of up to 59.8%.These findings validate the reliability of the strategy,expand its scope of applicability,and establish it as a powerful tool for tailoring thermal properties across a wider range of fields. 展开更多
关键词 thermal conductivityachieving thermal management capabilities boron nitride targeted phonon excitation iterative boltzmann transport equation solution hexagonal boron nitride hbn thermal conductivity modulating strategies thermal conductivity
原文传递
Thermal and Electrical Percolation Transport Behavior in Composite Materials with Oriented Binary Fillers
19
作者 Jinxin Zhong Zhuoyu Wang +3 位作者 Xiaokun Gu Jun Wang Yuanyuan Wang Xin Qian 《Chinese Physics Letters》 2025年第8期83-96,共14页
In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applic... In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applications.We proposed the thermal-percolation electrical-resistive TIM incorporating binary fillers of both insulating and metallic nanowires with an orientation in the insulating polymer matrix.High thermal conductivity can be achieved through thermal percolation,while electrical non-conductivity is preserved by carefully controlling the electrical percolation threshold through metallic nanowire orientation.The electrical conductivity of the composite can be further regulated by adjusting the orientation and aspect ratio of the metallic fillers.A thermal conductivity of 10 W·m^(-1)·K^(-1)is achieved,with electrical non-conductive behavior preserved.This approach offers a pathway to realizing“thermal-percolation electrical-resistive”in hybrid TIMs,providing a strategic framework for designing high-performance TIMs. 展开更多
关键词 insulating polymer matrixhigh thermal conductivity electrical resistive integrated circuit packagingthermal interface materials tims must composite materials binary fillers metallic nanowires thermal percolationwhile thermal percolation
原文传递
High-fidelity Lumped-parameter Thermal Models for Assessing Cooling Techniques of PMSMs in EV Applications 被引量:2
20
作者 Dawei Liang Zi Qiang Zhu Ankan Dey 《CES Transactions on Electrical Machines and Systems》 2025年第1期1-14,共14页
This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,includin... This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications. 展开更多
关键词 Cooling techniques Electric vehicle Lumpedparameter thermal model Permanent magnet synchronous machines thermal analysis thermal management
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部